19 for (
unsigned i = 0; i<indices.size(); ++i)
45template<ProgramType T>
53 float f =
S.score(ind, train, errors, params);
58 f_v =
S.score(ind, validation, errors, params);
80 if (n.compare(
"error")==0)
81 values.push_back(val ? f_v : f);
82 else if (n.compare(
"complexity")==0)
84 else if (n.compare(
"size")==0)
86 else if (n.compare(
"depth")==0)
holds variable type data.
Dataset get_validation_data() const
ArrayXf y
length N array, the target label
Dataset get_training_data() const
void update_fitness(Population< T > &pop, int island, const Dataset &data, const Parameters ¶ms, bool fit=true, bool validation=false)
Update the fitness of individuals in a population.
void assign_fit(Individual< T > &ind, const Dataset &data, const Parameters ¶ms, bool val=false)
Assign fitness to an individual.
unsigned int get_complexity() const
unsigned int get_size() const
VectorXf error
training error (used in lexicase selectors)
Fitness fitness
aggregate fitness score
vector< string > get_objectives() const
void set_objectives(vector< string > objs)
unsigned int get_depth() const
Program< T > program
executable data structure
bool get_is_fitted() const
vector< size_t > get_island_indexes(int island)
vector< std::shared_ptr< Individual< T > > > individuals
#define HANDLE_ERROR_THROW(err)
< nsga2 selection operator for getting the front
Namespace containing scoring functions for evaluation metrics.
float loss
aggregate loss score
void set_complexity(unsigned int new_c)
void set_loss_v(float f_v)
void set_depth(unsigned int new_d)
float loss_v
aggregate validation loss score
void set_values(vector< float > &v)
void set_size(unsigned int new_s)
vector< string > objectives
int complexity() const
count the complexity of the program.
Program< PType > & fit(const Dataset &d)
int depth() const
count the tree depth of the program. The depth is not influenced by weighted nodes.
int size(bool include_weight=true) const
count the tree size of the program, including the weights in weighted nodes.