14template<ProgramType T>
70 this->is_fitted_ =
true;
80 auto predict(
const Ref<const ArrayXXf>& X)
86 template <ProgramType P = T>
89 template <ProgramType P = T>
104 string get_model(
string fmt=
"compact",
bool pretty=
false) {
105 return program.get_model(fmt, pretty); };
107 return program.get_dot_model(extras); };
124 for (
const auto& p : parents)
139 {
"complexity", -1.0},
140 {
"linear_complexity", -1.0},
145 {
"average_precision_score", +1.0},
146 {
"balanced_accuracy", +1.0},
155 vector<float> weights;
161 weights.push_back(it->second);
163 throw std::runtime_error(
164 "Unknown metric used as fitness. Value was " + obj);
174template<ProgramType T>
188template<ProgramType T>
191 j.at(
"program").get_to( p.
program );
192 j.at(
"fitness").get_to( p.
fitness );
193 j.at(
"id").get_to( p.
id );
197 j.at(
"variation").get_to( p.
variation );\
holds variable type data.
vector< Node > sampled_nodes
static std::map< std::string, float > weightsMap
void set_is_fitted(bool fitted)
unsigned int get_complexity() const
string get_model(string fmt="compact", bool pretty=false)
vector< string > objectives
auto predict(const Dataset &data)
void set_fitness(Fitness &f)
auto predict_proba(const Dataset &d)
Individual< T > & fit(const Dataset &data)
void set_variation(string v)
void set_sampled_nodes(const vector< Node > &nodes)
unsigned int get_size() const
Program< T > & get_program()
vector< Node > get_sampled_nodes() const
Individual< T > & fit(const Ref< const ArrayXXf > &X, const Ref< const ArrayXf > &y)
string get_variation() const
void set_parents(const vector< unsigned > &parents)
set parent ids using parents
string get_dot_model(string extras="")
vector< string > get_objectives() const
auto predict_proba(const Ref< const ArrayXXf > &X)
void set_objectives(vector< string > objs)
void set_parents(const vector< Individual< T > > &parents)
Individual(Program< T > &prg)
unsigned int get_depth() const
vector< unsigned > parent_id
auto predict(const Ref< const ArrayXXf > &X)
unsigned int get_linear_complexity() const
void init(SearchSpace &ss, const Parameters ¶ms)
bool get_is_fitted() const
void to_json(json &j, const Individual< T > &p)
void from_json(const json &j, Individual< T > &p)
< nsga2 selection operator for getting the front
Represents the fitness of an individual in the Brush namespace.
vector< string > get_objectives() const
An individual program, a.k.a. model.
Holds a search space, consisting of operations and terminals and functions, and methods to sample tha...
PT make_program(const Parameters ¶ms, int max_d=0, int max_size=0)
Makes a random program.