Feat C++ API
A feature engineering automation tool
|
structure to store data of a node of CART. This can be used as a template type in TreeMachineNode class. CART algorithm uses nodes of type CTreeMachineNode<CARTreeNodeData> More...
#include <MyCARTreeNodeData.h>
Public Member Functions | |
MyCARTreeNodeData () | |
Static Public Member Functions | |
static void | print_data (const MyCARTreeNodeData &data) |
Public Attributes | |
int32_t | attribute_id |
SGVector< float64_t > | transit_into_values |
float64_t | node_label |
float64_t | total_weight |
float64_t | weight_minus_node |
float64_t | weight_minus_branch |
int32_t | num_leaves |
float64_t | IG |
WGL: IG is the Impurity Gain of this node: IG(n) = impurity(n) - impurity(l) - impurity(r) More... | |
structure to store data of a node of CART. This can be used as a template type in TreeMachineNode class. CART algorithm uses nodes of type CTreeMachineNode<CARTreeNodeData>
Definition at line 50 of file MyCARTreeNodeData.h.
shogun::MyCARTreeNodeData::MyCARTreeNodeData | ( | ) |
constructor
Definition at line 38 of file MyCARTreeNodeData.cc.
|
static |
print data
data | the data to be printed |
Definition at line 51 of file MyCARTreeNodeData.cc.
int32_t shogun::MyCARTreeNodeData::attribute_id |
classifying attribute
Definition at line 53 of file MyCARTreeNodeData.h.
float64_t shogun::MyCARTreeNodeData::IG |
WGL: IG is the Impurity Gain of this node: IG(n) = impurity(n) - impurity(l) - impurity(r)
Definition at line 74 of file MyCARTreeNodeData.h.
float64_t shogun::MyCARTreeNodeData::node_label |
classification/regression label of data
Definition at line 59 of file MyCARTreeNodeData.h.
int32_t shogun::MyCARTreeNodeData::num_leaves |
number of leaves in the subtree beginning at this node
Definition at line 71 of file MyCARTreeNodeData.h.
float64_t shogun::MyCARTreeNodeData::total_weight |
total weight of training samples passing through this node
Definition at line 62 of file MyCARTreeNodeData.h.
SGVector<float64_t> shogun::MyCARTreeNodeData::transit_into_values |
feature value(s) required to move into this node
Definition at line 56 of file MyCARTreeNodeData.h.
float64_t shogun::MyCARTreeNodeData::weight_minus_branch |
total weight of misclassified samples in subtree/ weighted sum of squared deviation in case of regression
Definition at line 68 of file MyCARTreeNodeData.h.
float64_t shogun::MyCARTreeNodeData::weight_minus_node |
total weight of misclassified samples in node/ weighted sum of squared deviation in case of regression
Definition at line 65 of file MyCARTreeNodeData.h.