Feat C++ API
A feature engineering automation tool
MyCARTreeNodeData.cc
Go to the documentation of this file.
1 /*
2  * edited by William La Cava (WGL), UPenn, 2018
3  * Copyright (c) The Shogun Machine Learning Toolbox
4  * Written (w) 2014 Parijat Mazumdar
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright notice, this
11  * list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright notice,
13  * this list of conditions and the following disclaimer in the documentation
14  * and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
20  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  * The views and conclusions contained in the software and documentation are those
28  * of the authors and should not be interpreted as representing official policies,
29  * either expressed or implied, of the Shogun Development Team.
30  */
31 
32 
33 #include "MyCARTreeNodeData.h"
34 
35 namespace shogun
36 {
37 
39  {
40  attribute_id=-1;
41  transit_into_values=SGVector<float64_t>();
42  node_label=-1.0;
43  total_weight=0.;
46  num_leaves=0;
47  // WGL
48  IG = -1.0;
49  }
50 
52  {
53  SG_SPRINT("classifying feature index=%d\n", data.attribute_id);
54  data.transit_into_values.display_vector(data.transit_into_values.vector,data.transit_into_values.vlen, "transit values");
55  SG_SPRINT("total weight=%f\n", data.total_weight);
56  SG_SPRINT("errored weight of node=%f\n", data.weight_minus_node);
57  SG_SPRINT("errored weight of subtree=%f\n", data.weight_minus_branch);
58  //WGL
59  SG_SPRINT("IG of node=%f\n",data.IG);
60  SG_SPRINT("number of leaves in subtree=%d\n", data.num_leaves);
61  }
62 
63 } /* shogun */
64 
structure to store data of a node of CART. This can be used as a template type in TreeMachineNode cla...
SGVector< float64_t > transit_into_values
float64_t IG
WGL: IG is the Impurity Gain of this node: IG(n) = impurity(n) - impurity(l) - impurity(r)
static void print_data(const MyCARTreeNodeData &data)