|
Brush C++ API
A flexible interpretable machine learning framework
|


Go to the source code of this file.
Namespaces | |
| namespace | Brush |
| < nsga2 selection operator for getting the front | |
| namespace | Eval |
| Namespace containing scoring functions for evaluation metrics. | |
| namespace | Brush::Eval |
Functions | |
| float | Brush::Eval::mse (const VectorXf &y, const VectorXf &yhat, VectorXf &loss, const vector< float > &class_weights) |
| mean squared error | |
| VectorXf | Brush::Eval::log_loss (const VectorXf &y, const VectorXf &predict_proba, const vector< float > &class_weights=vector< float >()) |
| Calculates the log loss between the predicted probabilities and the true labels. | |
| float | Brush::Eval::mean_log_loss (const VectorXf &y, const VectorXf &predict_proba, VectorXf &loss, const vector< float > &class_weights) |
| log loss | |
| float | Brush::Eval::average_precision_score (const VectorXf &y, const VectorXf &predict_proba, VectorXf &loss, const vector< float > &class_weights=vector< float >()) |
| Calculates the average precision score between the predicted probabilities and the true labels. | |
| float | Brush::Eval::zero_one_loss (const VectorXf &y, const VectorXf &predict_proba, VectorXf &loss, const vector< float > &class_weights=vector< float >()) |
| Accuracy for binary classification. | |
| float | Brush::Eval::bal_zero_one_loss (const VectorXf &y, const VectorXf &predict_proba, VectorXf &loss, const vector< float > &class_weights=vector< float >()) |
| Balanced accuracy for binary classification. | |
| VectorXf | Brush::Eval::multi_log_loss (const VectorXf &y, const ArrayXXf &predict_proba, const vector< float > &class_weights=vector< float >()) |
| Calculates the multinomial log loss between the predicted probabilities and the true labels. | |
| float | Brush::Eval::mean_multi_log_loss (const VectorXf &y, const ArrayXXf &predict_proba, VectorXf &loss, const vector< float > &class_weights=vector< float >()) |
| Calculates the mean multinomial log loss between the predicted probabilities and the true labels. | |
| float | Brush::Eval::multi_zero_one_loss (const VectorXf &y, const ArrayXXf &predict_proba, VectorXf &loss, const vector< float > &class_weights=vector< float >()) |
| Accuracy for multi-classification. | |