|
void | Brush::Util::clean (ArrayXf &x) |
| limits node output to be between MIN_FLT and MAX_FLT
|
|
std::string | Brush::Util::ltrim (std::string str, const std::string &chars) |
|
std::string | Brush::Util::rtrim (std::string str, const std::string &chars) |
|
std::string | Brush::Util::trim (std::string str, const std::string &chars) |
|
vector< type_index > | Brush::Util::get_dtypes (MatrixXf &X) |
| calculates data types for each column of X
|
|
float | Brush::Util::condition_number (const MatrixXf &X) |
| returns true for elements of x that are infinite
|
|
MatrixXf | Brush::Util::corrcoef (const MatrixXf &X) |
| returns the pearson correlation coefficients of matrix.
|
|
float | Brush::Util::mean_square_corrcoef (const MatrixXf &X) |
|
int | Brush::Util::argmiddle (vector< float > &v) |
| returns the (first) index of the element with the middlest value in v
|
|
float | Brush::Util::variance (const ArrayXf &v) |
| calculate variance
|
|
float | Brush::Util::skew (const ArrayXf &v) |
| calculate skew
|
|
float | Brush::Util::kurtosis (const ArrayXf &v) |
| calculate kurtosis
|
|
float | Brush::Util::covariance (const ArrayXf &x, const ArrayXf &y) |
| covariance of x and y
|
|
float | Brush::Util::slope (const ArrayXf &x, const ArrayXf &y) |
| slope of x/y
|
|
float | Brush::Util::pearson_correlation (const ArrayXf &x, const ArrayXf &y) |
| the normalized covariance of x and y
|
|
float | Brush::Util::mad (const ArrayXf &x) |
| median absolute deviation
|
|
std::string | Brush::Util::ReplaceString (std::string subject, const std::string &search, const std::string &replace) |
| find and replace string
|
|
void | Brush::Util::ReplaceStringInPlace (std::string &subject, const std::string &search, const std::string &replace) |
| string find and replace in place
|
|
vector< size_t > | Brush::Util::mask_to_index (const ArrayXb &mask) |
| convert a boolean mask to an index array
|
|
tuple< vector< size_t >, vector< size_t > > | Brush::Util::mask_to_indices (const ArrayXb &mask) |
| returns 2 indices: first where mask is true, and second where mask is false.
|
|