|
| | Feat () |
| | member initializer list constructor More...
|
| |
| | ~Feat () |
| | destructor
More...
|
| |
| void | init () |
| | initialize Feat object for fitting. More...
|
| |
| void | set_is_fitted (bool f) |
| | set flag indicating whether fit has been called More...
|
| |
| bool | get_is_fitted () |
| |
| void | set_pop_size (int pop_size) |
| | set size of population More...
|
| |
| int | get_pop_size () |
| | return population size More...
|
| |
| void | set_gens (int gens) |
| | set size of max generations
More...
|
| |
| int | get_gens () |
| | return size of max generations More...
|
| |
| void | set_ml (string ml) |
| | set ML algorithm to use
More...
|
| |
| string | get_ml () |
| | return ML algorithm string More...
|
| |
| void | set_classification (bool classification) |
| | set EProblemType for shogun
More...
|
| |
| bool | get_classification () |
| | return type of classification flag set More...
|
| |
| void | set_verbosity (int verbosity) |
| | set level of debug info
More...
|
| |
| int | get_verbosity () |
| | return current verbosity level set More...
|
| |
| void | set_max_stall (int max_stall) |
| | set maximum stall in learning, in generations More...
|
| |
| int | get_max_stall () |
| | return maximum stall in learning, in generations More...
|
| |
| void | set_selection (string sel) |
| | set selection method
More...
|
| |
| void | set_survival (string surv) |
| | set survivability
More...
|
| |
| float | get_cross_rate () |
| | return cross rate for variation More...
|
| |
| void | set_cross_rate (float cross_rate) |
| | set cross rate in variation
More...
|
| |
| void | set_root_xo_rate (float cross_rate) |
| | set root xo rate in variation
More...
|
| |
| float | get_root_xo_rate () |
| |
| vector< char > | get_otypes () |
| | return program output type ('f', 'b')
More...
|
| |
| char | get_otype () |
| | return parameter otype, used to set otypes More...
|
| |
| void | set_otype (char ot) |
| | set program output type ('f', 'b')
More...
|
| |
| void | set_functions (const vector< string > &fns) |
| | sets available functions based on comma-separated list. More...
|
| |
| vector< string > | get_functions () |
| |
| int | get_max_depth () |
| | return max_depth of programs More...
|
| |
| void | set_max_depth (unsigned int max_depth) |
| | set max depth of programs
More...
|
| |
| int | get_max_dim () |
| | return max dimensionality of programs More...
|
| |
| void | set_max_dim (unsigned int max_dim) |
| | set maximum dimensionality of programs
More...
|
| |
| void | set_random_state (int random_state) |
| | set dimensionality as multiple of the number of columns More...
|
| |
| int | get_random_state () |
| |
| int | get_random_state_ () |
| | returns the actual seed determined by the input argument. More...
|
| |
| bool | get_erc () |
| | return boolean value of erc flag More...
|
| |
| void | set_erc (bool erc) |
| | flag to set whether to use variable or constants for terminals More...
|
| |
| bool | get_shuffle () |
| | return whether option to shuffle the data is set or not More...
|
| |
| void | set_shuffle (bool sh) |
| | flag to shuffle the input samples for train/test splits More...
|
| |
| float | get_split () |
| | return fraction of data to use for training More...
|
| |
| void | set_split (float sp) |
| | set train fraction of dataset More...
|
| |
| vector< char > | get_dtypes () |
| | return data types for input parameters More...
|
| |
| void | set_dtypes (vector< char > dtypes) |
| | set data types for input parameters More...
|
| |
| float | get_fb () |
| | get feedback setting More...
|
| |
| void | set_fb (float fb) |
| | set feedback More...
|
| |
| string | get_logfile () |
| | get name More...
|
| |
| void | set_logfile (string s) |
| | set name for files More...
|
| |
| string | get_scorer () |
| |
| void | set_scorer (string s) |
| | set scoring function More...
|
| |
| string | get_scorer_ () |
| |
| void | set_feature_names (string s) |
| |
| string | get_feature_names () |
| |
| void | set_backprop (bool bp) |
| | set constant optimization options More...
|
| |
| bool | get_backprop () |
| |
| void | set_simplify (float s) |
| |
| float | get_simplify () |
| |
| void | set_corr_delete_mutate (bool s) |
| |
| bool | get_corr_delete_mutate () |
| |
| void | set_hillclimb (bool hc) |
| |
| bool | get_hillclimb () |
| |
| void | set_iters (int iters) |
| |
| int | get_iters () |
| |
| void | set_lr (float lr) |
| |
| float | get_lr () |
| |
| int | get_batch_size () |
| |
| void | set_batch_size (int bs) |
| |
| void | set_n_jobs (unsigned t) |
| | set number of threads More...
|
| |
| int | get_n_jobs () |
| |
| void | set_max_time (int time) |
| | set max time in seconds for fit method More...
|
| |
| int | get_max_time () |
| |
| void | set_use_batch () |
| | set flag to use batch for training More...
|
| |
| void | set_residual_xo (bool res_xo=true) |
| | use residual crossover More...
|
| |
| bool | get_residual_xo () |
| |
| void | set_stagewise_xo (bool sem_xo=true) |
| | use stagewise crossover More...
|
| |
| bool | get_stagewise_xo () |
| |
| void | set_stagewise_xo_tol (int tol) |
| |
| int | get_stagewise_xo_tol () |
| |
| void | set_softmax_norm (bool sftmx=true) |
| | use softmax More...
|
| |
| bool | get_softmax_norm () |
| |
| void | set_save_pop (int pp) |
| |
| int | get_save_pop () |
| |
| void | set_starting_pop (string sp) |
| |
| string | get_starting_pop () |
| |
| void | set_normalize (bool in) |
| |
| bool | get_normalize () |
| |
| string | get_sel () |
| |
| void | set_sel (string in) |
| |
| string | get_surv () |
| |
| void | set_surv (string in) |
| |
| bool | get_tune_initial () |
| |
| void | set_tune_initial (bool in) |
| |
| bool | get_tune_final () |
| |
| void | set_tune_final (bool in) |
| |
| auto | get_objectives () |
| | get objectives for multi-objective search More...
|
| |
| void | set_objectives (const vector< string > &obj) |
| | set objectives for multi-objective search More...
|
| |
| string | get_protected_groups () |
| |
| void | set_protected_groups (string pg) |
| | set protected groups for fairness More...
|
| |
| bool | get_val_from_arch () |
| |
| void | set_val_from_arch (bool in) |
| |
| int | get_archive_size () |
| | return archive size More...
|
| |
| int | get_max_size () |
| | return max size of programs More...
|
| |
| int | get_num_features () |
| | return number of features More...
|
| |
| string | get_representation () |
| | return best model More...
|
| |
| string | get_model (bool sort=true) |
| | return best model, in tabular form More...
|
| |
| string | get_ind_eqn (bool sort, Individual &ind) |
| | return best model as a single line equation More...
|
| |
| string | get_eqn (bool sort=false) |
| |
| int | get_n_params () |
| | get number of parameters in best More...
|
| |
| int | get_dim () |
| | get dimensionality of best More...
|
| |
| int | get_complexity () |
| | get dimensionality of best More...
|
| |
| vector< nl::json > | get_archive (bool front) |
| | return population as string More...
|
| |
| ArrayXf | get_coefs () |
| | return the coefficients or importance scores of the best model. More...
|
| |
| int | get_n_nodes () |
| | return the number of nodes in the best model More...
|
| |
| LongData | get_Z (string s, int *idx, int idx_size) |
| | get longitudinal data from file s More...
|
| |
| void | fit (MatrixXf &X, VectorXf &y) |
| | train a model.
More...
|
| |
| void | fit (MatrixXf &X, VectorXf &y, LongData &Z) |
| |
| void | run_generation (unsigned int g, vector< size_t > survivors, DataRef &d, std::ofstream &log, float percentage, unsigned &stall_count) |
| |
| VectorXf | predict (MatrixXf &X, LongData &Z) |
| | predict on unseen data.
More...
|
| |
| VectorXf | predict (MatrixXf &X) |
| |
| VectorXf | predict_archive (int id, MatrixXf &X) |
| | predict on unseen data from the whole archive
More...
|
| |
| VectorXf | predict_archive (int id, MatrixXf &X, LongData &Z) |
| |
| ArrayXXf | predict_proba_archive (int id, MatrixXf &X, LongData &Z) |
| |
| ArrayXXf | predict_proba_archive (int id, MatrixXf &X) |
| |
| shared_ptr< CLabels > | predict_labels (MatrixXf &X, LongData Z=LongData()) |
| | predict on unseen data. return CLabels. More...
|
| |
| ArrayXXf | predict_proba (MatrixXf &X, LongData &Z) |
| | predict probabilities of each class. More...
|
| |
| ArrayXXf | predict_proba (MatrixXf &X) |
| |
| MatrixXf | transform (MatrixXf &X) |
| | transform an input matrix using a program.
More...
|
| |
| MatrixXf | transform (MatrixXf &X, LongData &Z) |
| |
| MatrixXf | transform (MatrixXf &X, LongData Z, Individual *ind) |
| |
| float | score (MatrixXf &X, const VectorXf &y, LongData Z=LongData()) |
| | scoring function More...
|
| |
| nl::json | get_stats () |
| | return statistics from the run as a json string More...
|
| |
| void | load_best_ind (string filename) |
| | load best_ind from file More...
|
| |
| void | load_population (string filename, bool justfront=false) |
| | load population from file, optionall just Pareto front More...
|
| |
| void | load (const json &j) |
| | load Feat state from a json string. More...
|
| |
| void | load_from_file (string filename) |
| | load Feat state from file. More...
|
| |
| json | save () const |
| | save and return a json Feat state as string. More...
|
| |
| void | save_to_file (string filename) |
| | save Feat state to file. More...
|
| |
main class for the Feat learner.
Feat optimizes feature represenations for a given machine learning algorithm. It does so by using evolutionary computation to optimize a population of programs. Each program represents a set of feature transformations.
Definition at line 72 of file feat.h.