8 #ifndef _MULTICLASSLIBLINEAR_H___
9 #define _MULTICLASSLIBLINEAR_H___
11 #include <shogun/lib/config.h>
12 #include <shogun/lib/common.h>
13 #include <shogun/features/DotFeatures.h>
14 #include <shogun/machine/LinearMulticlassMachine.h>
15 #include <shogun/optimization/liblinear/shogun_liblinear.h>
16 #include <shogun/lib/config.h>
17 #include <shogun/multiclass/MulticlassOneVsRestStrategy.h>
18 #include <shogun/mathematics/Math.h>
19 #include <shogun/lib/v_array.h>
20 #include <shogun/lib/Signal.h>
21 #include <shogun/labels/MulticlassLabels.h>
23 #include <Eigen/Dense>
63 virtual const char*
get_name()
const;
68 inline void set_C(float64_t C);
73 inline float64_t
get_C()
const;
126 vector<SGVector<float64_t>>
get_w()
const;
127 void set_w(vector<Eigen::VectorXd> wnew);
multiclass LibLinear wrapper. Uses Crammer-Singer formulation and gradient descent optimization algor...
vector< SGVector< float64_t > > get_w() const
MACHINE_PROBLEM_TYPE(PT_MULTICLASS)
void set_epsilon(float64_t epsilon)
virtual const char * get_name() const
void set_use_bias(bool use_bias)
~CMyMulticlassLibLinear()
void set_max_iter(int32_t max_iter)
mcsvm_state * m_train_state
void set_w(vector< Eigen::VectorXd > wnew)
bool train_machine(CFeatures *data)
void register_parameters()
SGVector< int32_t > get_support_vectors() const
float64_t get_epsilon() const
SGMatrix< float64_t > obtain_regularizer_matrix() const
int32_t get_max_iter() const
bool get_use_bias() const
bool get_save_train_state() const
void set_save_train_state(bool save_train_state)