Brush C++ API
A flexible interpretable machine learning framework
Loading...
Searching...
No Matches
split.h File Reference
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

struct  Operator< NT, S, Fit, enable_if_t< is_in_v< NT, NodeType::SplitOn, NodeType::SplitBest > > >
 

Namespaces

namespace  Split
 

Functions

template<typename T >
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, bool>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, bJet>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, float>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, fJet>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, int>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
template<typename T >
requires same_as<typename T::Scalar, iJet>
ArrayXb Split::threshold_mask (const T &x, const float &threshold)
 Applies a learned threshold to a feature, returning a mask.
 
float Split::gini_impurity_index (const ArrayXf &classes, const vector< float > &uc)
 
float Split::gain (const ArrayXf &lsplit, const ArrayXf &rsplit, bool classification, vector< float > unique_classes)
 
template<typename T >
vector< floatSplit::get_thresholds (const T &x)
 
tuple< string, floatSplit::get_best_variable_and_threshold (const Dataset &d, TreeNode &tn)
 
template<typename T >
tuple< float, floatSplit::best_threshold (const T &x, const ArrayXf &y, bool classification)
 
template<typename T >
void Split::get_best_threshold_by_type (const Dataset &d, auto &results)
 
template<typename Ts , std::size_t... Is>
auto Split::get_best_thresholds (const Dataset &d, std::index_sequence< Is... >)
 
template<typename T >
Split::stitch (array< T, 2 > &child_outputs, const ArrayXb &mask)
 Stitches together outputs from left or right child based on threshold.