|
Brush C++ API
A flexible interpretable machine learning framework
|

Go to the source code of this file.
Classes | |
| struct | Operator< NT, S, Fit, enable_if_t< is_in_v< NT, NodeType::SplitOn, NodeType::SplitBest > > > |
Namespaces | |
| namespace | Split |
Functions | |
| template<typename T> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, bool> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, bJet> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, float> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, fJet> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, int> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| template<typename T> requires same_as<typename T::Scalar, iJet> | |
| ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
| Applies a learned threshold to a feature, returning a mask. | |
| float | Split::gini_impurity_index (const ArrayXf &classes, const vector< float > &uc) |
| float | Split::gain (const ArrayXf &lsplit, const ArrayXf &rsplit, bool classification, vector< float > unique_classes) |
| template<typename T> | |
| vector< float > | Split::get_thresholds (const T &x) |
| tuple< string, float > | Split::get_best_variable_and_threshold (const Dataset &d, TreeNode &tn) |
| template<typename T> | |
| tuple< float, float > | Split::best_threshold (const T &x, const ArrayXf &y, bool classification) |
| template<typename T> | |
| void | Split::get_best_threshold_by_type (const Dataset &d, auto &results) |
| template<typename Ts, std::size_t... Is> | |
| auto | Split::get_best_thresholds (const Dataset &d, std::index_sequence< Is... >) |
| template<typename T> | |
| T | Split::stitch (array< T, 2 > &child_outputs, const ArrayXb &mask) |
| Stitches together outputs from left or right child based on threshold. | |