Brush C++ API
A flexible interpretable machine learning framework
|
Go to the source code of this file.
Classes | |
struct | Operator< NT, S, Fit, enable_if_t< is_in_v< NT, NodeType::SplitOn, NodeType::SplitBest > > > |
Namespaces | |
namespace | Split |
Functions | |
template<typename T > | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, bool> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, bJet> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, float> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, fJet> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, int> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
template<typename T > requires same_as<typename T::Scalar, iJet> | |
ArrayXb | Split::threshold_mask (const T &x, const float &threshold) |
Applies a learned threshold to a feature, returning a mask. | |
float | Split::gini_impurity_index (const ArrayXf &classes, const vector< float > &uc) |
float | Split::gain (const ArrayXf &lsplit, const ArrayXf &rsplit, bool classification, vector< float > unique_classes) |
template<typename T > | |
vector< float > | Split::get_thresholds (const T &x) |
tuple< string, float > | Split::get_best_variable_and_threshold (const Dataset &d, TreeNode &tn) |
template<typename T > | |
tuple< float, float > | Split::best_threshold (const T &x, const ArrayXf &y, bool classification) |
template<typename T > | |
void | Split::get_best_threshold_by_type (const Dataset &d, auto &results) |
template<typename Ts , std::size_t... Is> | |
auto | Split::get_best_thresholds (const Dataset &d, std::index_sequence< Is... >) |
template<typename T > | |
T | Split::stitch (array< T, 2 > &child_outputs, const ArrayXb &mask) |
Stitches together outputs from left or right child based on threshold. | |