{ "cells": [ { "cell_type": "markdown", "id": "a1387f84", "metadata": {}, "source": [ "# Measuring Disparities\n", "\n", "`measure_disparity.py` takes as input a [pandas Dataframe](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html) containing the following observations:\n", " - model predictions and probabilities\n", " - binary outcomes\n", " - demographics\n", " " ] }, { "cell_type": "markdown", "id": "060f43c7", "metadata": {}, "source": [ "## run measure_disparity.py on model output\n", "\n", "To run `measure_disparity.py` on the dataframe, you may use the command line interface, as shown below. \n", "It is also possible to import the underlying function like so:\n", "\n", "```python\n", "from measure_disparity import measure_disparity\n", "```\n", "\n", "And then call the function. See the [API](https://cavalab.org/interfair/api.html) for a full specification of options and requirements. \n", "\n", "Below, we demonstrate how to run `measure_disparity.py` from the command line using a model trained to predict risk of admission to the emergency department using the freely available [MIMIC-IV repository](https://www.nature.com/articles/s41597-022-01899-x). " ] }, { "cell_type": "code", "execution_count": 1, "id": "6df7ca69", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "reading in ../base_model_mimic4_admission.csv\n", "demographic columns: ['insurance', 'ethnicity', 'gender']\n", "========================================\n", "Overall Performance\n", "========================================\n", "\tMeasures of predictive bias on the whole population.\n", "╭─────────┬─────────┬───────────────────┬───────┬───────┬────────────╮\n", "│ AUROC │ AUPRC │ Positivity Rate │ FPR │ FNR │ Accuracy │\n", "├─────────┼─────────┼───────────────────┼───────┼───────┼────────────┤\n", "│ 0.881 │ 0.77 │ 0.299 │ 0.08 │ 0.409 │ 0.823 │\n", "╰─────────┴─────────┴───────────────────┴───────┴───────┴────────────╯\n", "========================================\n", "Subgroup Fairness Violations\n", "========================================\n", "\tMeasures the deviation in performance for marginal and intersectional groups.\n", "\tNote that these deviation are weighted by group prevalence to produce stable estimates when sample sizes are small.\n", "╭─────────────┬───────────────────────────────┬──────────┬─────────────────────┬─────────┬─────────┬───────────────────╮\n", "│ insurance │ ethnicity │ gender │ Brier Score (MSE) │ FNR │ FPR │ Positivity Rate │\n", "├─────────────┼───────────────────────────────┼──────────┼─────────────────────┼─────────┼─────────┼───────────────────┤\n", "│ any │ any │ F │ -0.006 │ 0.007 │ -0.015 │ -0.022 │\n", "│ any │ any │ M │ 0.006 │ -0.01 │ 0.02 │ 0.022 │\n", "│ any │ AMERICAN INDIAN/ALASKA NATIVE │ any │ 0.0 │ 0.024 │ -0.036 │ -0.0 │\n", "│ any │ ASIAN │ any │ 0.001 │ 0.022 │ 0.008 │ 0.0 │\n", "│ any │ BLACK/AFRICAN AMERICAN │ any │ -0.012 │ 0.015 │ -0.058 │ **-0.035 │\n", "│ any │ HISPANIC/LATINO │ any │ -0.004 │ 0.015 │ -0.044 │ -0.012 │\n", "│ any │ WHITE │ any │ **0.015 │ -0.011 │ 0.033 │ 0.047 │\n", "│ Medicaid │ any │ any │ -0.005 │ 0.008 │ -0.048 │ -0.013 │\n", "│ Medicaid │ AMERICAN INDIAN/ALASKA NATIVE │ F │ -0.0 │ 0.021 │ -0.154 │ -0.0 │\n", "│ Medicaid │ AMERICAN INDIAN/ALASKA NATIVE │ M │ -0.0 │ -0.0 │ -0.034 │ -0.0 │\n", "│ Medicaid │ ASIAN │ F │ 0.0 │ 0.036 │ 0.005 │ -0.0 │\n", "│ Medicaid │ ASIAN │ M │ 0.0 │ -0.004 │ 0.056 │ 0.0 │\n", "│ Medicaid │ BLACK/AFRICAN AMERICAN │ F │ -0.002 │ 0.01 │ -0.085 │ -0.006 │\n", "│ Medicaid │ BLACK/AFRICAN AMERICAN │ M │ -0.001 │ 0.009 │ -0.084 │ -0.003 │\n", "│ Medicaid │ HISPANIC/LATINO │ F │ -0.001 │ 0.013 │ -0.07 │ -0.003 │\n", "│ Medicaid │ HISPANIC/LATINO │ M │ -0.0 │ 0.013 │ -0.027 │ -0.001 │\n", "│ Medicaid │ WHITE │ F │ -0.0 │ 0.007 │ -0.018 │ -0.001 │\n", "│ Medicaid │ WHITE │ M │ -0.0 │ -0.006 │ -0.006 │ -0.0 │\n", "│ Medicare │ any │ any │ 0.005 │ -0.024 │ 0.03 │ 0.028 │\n", "│ Medicare │ AMERICAN INDIAN/ALASKA NATIVE │ F │ 0.0 │ **0.047 │ **0.074 │ 0.0 │\n", "│ Medicare │ AMERICAN INDIAN/ALASKA NATIVE │ M │ 0.0 │ 0.045 │ 0.058 │ 0.0 │\n", "│ Medicare │ ASIAN │ F │ 0.0 │ 0.019 │ 0.007 │ 0.0 │\n", "│ Medicare │ ASIAN │ M │ 0.0 │ -0.03 │ 0.046 │ 0.0 │\n", "│ Medicare │ BLACK/AFRICAN AMERICAN │ F │ -0.001 │ 0.013 │ -0.035 │ -0.003 │\n", "│ Medicare │ BLACK/AFRICAN AMERICAN │ M │ -0.0 │ 0.009 │ -0.028 │ -0.002 │\n", "│ Medicare │ HISPANIC/LATINO │ F │ -0.0 │ 0.001 │ -0.039 │ -0.001 │\n", "│ Medicare │ HISPANIC/LATINO │ M │ -0.0 │ 0.001 │ 0.002 │ -0.0 │\n", "│ Medicare │ WHITE │ F │ 0.003 │ -0.026 │ 0.041 │ 0.015 │\n", "│ Medicare │ WHITE │ M │ 0.003 │ -0.046 │ 0.06 │ 0.019 │\n", "│ Other │ any │ any │ 0.001 │ 0.012 │ -0.007 │ -0.014 │\n", "│ Other │ AMERICAN INDIAN/ALASKA NATIVE │ F │ -0.0 │ 0.028 │ -0.076 │ -0.0 │\n", "│ Other │ AMERICAN INDIAN/ALASKA NATIVE │ M │ 0.0 │ -0.001 │ -0.025 │ 0.0 │\n", "│ Other │ ASIAN │ F │ 0.0 │ 0.043 │ -0.012 │ -0.001 │\n", "│ Other │ ASIAN │ M │ 0.0 │ 0.002 │ 0.023 │ 0.001 │\n", "│ Other │ BLACK/AFRICAN AMERICAN │ F │ -0.006 │ 0.017 │ -0.07 │ -0.017 │\n", "│ Other │ BLACK/AFRICAN AMERICAN │ M │ -0.001 │ 0.021 │ -0.041 │ -0.005 │\n", "│ Other │ HISPANIC/LATINO │ F │ -0.002 │ 0.018 │ -0.059 │ -0.006 │\n", "│ Other │ HISPANIC/LATINO │ M │ -0.0 │ 0.023 │ -0.017 │ -0.001 │\n", "│ Other │ WHITE │ F │ 0.004 │ 0.017 │ 0.012 │ 0.001 │\n", "│ Other │ WHITE │ M │ 0.005 │ -0.007 │ 0.041 │ 0.014 │\n", "╰─────────────┴───────────────────────────────┴──────────┴─────────────────────┴─────────┴─────────┴───────────────────╯\n", "Subgroups with Largest Deviations\n", "--------------------\n", "Brier Score (MSE)\n", "----------\n", "- Subgroup: ethnicity=WHITE\n", "- Brier Score (MSE) is 19.9 % higher among this group than the population.\n", "\n", "FNR\n", "----------\n", "- Subgroup: insurance=Medicare,ethnicity=AMERICAN INDIAN/ALASKA NATIVE,gender=F\n", "- FNR is 20.4 % higher among this group than the population.\n", "\n", "FPR\n", "----------\n", "- Subgroup: insurance=Medicare,ethnicity=AMERICAN INDIAN/ALASKA NATIVE,gender=F\n", "- FPR is 86.0 % higher among this group than the population.\n", "\n", "Positivity Rate\n", "----------\n", "- Subgroup: ethnicity=BLACK/AFRICAN AMERICAN\n", "- Positivity Rate is 44.9 % lower among this group than the population.\n", "\n", "saving results to df_fairness.csv\n" ] } ], "source": [ "%run ../measure_disparity.py --dataset ../base_model_mimic4_admission.csv " ] }, { "cell_type": "markdown", "id": "e938b7d5", "metadata": {}, "source": [ "## Visualizing results\n", "\n", "Running `measure_disparity.py` produces a `df_fairness.csv` file containing the resultant fairness metrics. Below, we show how to use this to generate additional figures for assessing model performance and bias. " ] }, { "cell_type": "code", "execution_count": 2, "id": "1efc28f1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACV4AAAXBCAYAAABvlxbaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXzdVZ0//tdN0rRJW2QXaIGySMuPsnZDResCTNmXkUWlFZRhYECKzjAgoDOuoHxHRVA7DiCriGJxpLJZlg7oUJYiUIZFgbKUrYCFtgmkN7m/P2piQ5vltjdNmj6fj0cfkPs59/059yY5Offe1+ecQqlUKgUAAAAAAAAAAIBuq+rtDgAAAAAAAAAAAKxtBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK9gHbZkyZLsvvvuGTlyZA4//PAO273wwgsZOXJkRo4cmfHjx+ett95aabvZs2e3q/XOO+9kv/32y8iRI3PVVVd12pdvf/vbGTlyZD7zmc+kVCqt+oMCAKDf6+48NklKpVJmzJiRz33uc/nABz6QnXbaKePHj8+kSZNy6qmn5rLLLssbb7zR7j7Tp0/PyJEjM3ny5E5rP//88xk1alRGjhyZU089tdO2rXPlkSNH5u/+7u9SLBZX2q713F3VA+gpH/vYx9rGq9Z/o0aNyrhx4/KpT30q1157bVpaWtrdZ/n3DVbV5MmTM3LkyIwePToLFy7s1n0WLlyYadOm5VOf+lQ+8IEPZPTo0Rk7dmwOP/zwnHfeeXnyySfL7udPf/rTtn7ccsstq/x4AADom5566qmMHDkyu+yyS5qamlba5ktf+lLbnPDtt99eaZtzzjknI0eOzLe//e0kyYUXXpiRI0fmzDPP7PT8Z555ZkaOHJkLL7yw3e2t7xt87GMfa7vt3fPy7vybPn16u/509e+yyy7r7lMHQAdqersDQO+5+eab09DQkCR59NFH8+STT2aHHXbo9D5vvvlmLrnkknzhC1/osv7AgQNz3nnn5ZOf/GT+4z/+IxMnTsyWW265QruHHnool112Werr6/PNb34zhUJh1R4QQB+wZMmS7LXXXmloaMhOO+3U9kL33V544YV8/OMfT5I88cQTHdb79re/nUsvvTRXXnllxo8fv8LxM888M9dff32S5IYbbuh0HJ88eXLuvffeJMl5552Xww47bKXtPvaxj2X+/Pld1gPoLd2dxxaLxUydOjUzZ85MoVDITjvtlLFjx6ZQKOTZZ5/NzJkzc8stt2TrrbfORz/60bL7cf3117ddNHD77bdn4cKFWX/99bu837x58zJ9+vQceeSRZZ8TYE3Za6+9sskmmyRJli5dmvnz52fOnDl54IEHcuedd+ZHP/pRxV6/P//887nvvvvazjVjxowcc8wxnd7n5ptvztlnn53Fixenvr4+u+yySzbeeOMsXrw4jz32WH7605/msssuy9lnn91lkLbVD3/4w/zgBz/IoEGD8oMf/CATJ05c7ccGrJtaX1dfccUVmTBhQoftWoOgt912W4YPH57kb6/zTznllHz+859v175YLOaXv/xlbrzxxjz55JNZvHhxhg4dmo022iijRo3K2LFjc8ghh6S+vr7tPhdeeGEuuuiidnVqamqywQYbZPTo0TnmmGOy1157ddjHO+64IyeeeGI+//nP55RTTsns2bMzZcqUDBs2LLfffnu7ttOnT8+XvvSl7j1Jy2l9X6T1eUuSq666KuPGjVtp+9bnbc6cORk8eHDZ5wPWbdttt1023njjvPbaa3n44YczduzYFdq0voe6dOnS/PGPf8yee+65QpvW+evK3rOtlJW9f/vss89mzpw52XjjjfOhD31oheNbbbXVCl+PGTOmw3Nsv/32q99RgHWc4BWsw1o/qN90003z6quv5vrrr88ZZ5zRYfsBAwakpaUlV1xxRaZMmZKNNtqoy3PsuuuuOfbYY3PJJZfk7LPPzuWXX97ujdmmpqacddZZaWlpyemnn972BgPA2mpVQq2dmTlzZjbYYIOVvjhesmRJu6vwuxrHl3fRRRflwAMPzIABA1a5bwC9pbvz2KuvvjozZ87Me9/73lx88cUrjMdvvPFGfvvb33ZrXvtupVIpv/71r9v1oztBgbq6ujQ2NuZHP/pRDj300NTW1pZ9boA14YQTTlghLPDQQw9l8uTJuf3223Pbbbdl7733rsi5WoOsrePp9OnTOx1Pb7zxxnzxi19MoVDIqaeems997nMZNGhQuzb33HNP/t//+3957rnnutWH888/PxdffHHq6+szbdq0ToMSAL1h8eLFOf744/Pggw+muro6u+yySzbbbLM0NzfnqaeeyowZMzJjxoyMGTNmpe9DLP/Be2NjYx5//PHccccdueOOO3LaaaflpJNOWul5f/e73yVJt8b8rbbaaqUhgbvuuiuvvfZa9thjj2y99dbderzf/e53c80113SrLUC5xo4dm5tvvjn33nvvCsGrl156KS+88EJ23HHHPPbYY7nvvvtWCF69+uqrmTdvXqqqqjoNNa2u8847b4Xbpk+fnjlz5mTbbbdd6fF3GzNmTLfaAbDqbDUI66jnn38+999/f+rr63PuuecmWbZSSkdbniTJ4MGDc+ihh6ahoSE//vGPu32uqVOnZtttt83s2bNXeLF80UUX5c9//nP23HPPfPKTn1y1BwPQhywfBlj+61XxxBNP5LnnnstHP/rRVFdXr3C8NeTVeq6uxvFWdXV1eeGFF/KLX/xilfsG0FvKmcfefPPNSZJTTjllpR8+bbjhhpk8eXJ22WWXsvsxe/bszJ8/P8OGDcvpp5+eJB2ucri8bbfdNnvuuWdeeuml/OxnPyv7vAC9adddd83f/d3fJVk2DlbC8kHWb3zjGxk6dGjbBQwr89prr+Xss89OqVTKv//7v+fkk09eIXSVJHvuuWeuueaaHHDAAV2e/2tf+1ouvvjivOc978lll10mdAX0ST/4wQ/y4IMPZocddsjMmTPz85//PN///vdz4YUX5sYbb8ysWbNy2mmntVvtanmtH7yfd955ueCCC3LTTTe1ha1+8IMf5KmnnlrhPi0tLbnjjjsyfPjwjBo1qss+jh07tu0cy//bdtttkyRHHHHESo+/W11dXebMmZM777yzjGcIoPtaV6lqXbVqea2rXU2ZMiX19fVtXy+v9X6jRo3Keuut14M9BWBtIHgF66jWq0n32Wef7LXXXhkxYkQWLFiQu+66q9P7nXLKKamtrc21116bF198sVvnGjhwYM4999xUVVXl/PPPb1su+tFHH80ll1xii0Gg31iVUGtnZs6cmSRtWxK+W2uoa+rUqd0ex5Pk05/+dJLkxz/+cRobG1epbwC9pZx57BtvvJFkWcCqJ/qRJIccckj23XffLoMCy/viF7+YJPnP//zPLFmypOJ9A+hJG2+8cZKkubm5IvWWD7J++MMfzn777Zek4wsYrrrqqjQ0NGT06NE56qijOq09YMCA7Lbbbh0eb2lpyVlnnZWrr746G264Ya644orsuuuuq/xYAHpS60UFZ555ZrbYYosVjm+22WY56aSTur2jQFVVVU499dRsueWWaWlpaVvZanlz5szJG2+80eH7Ej2l9X2L73//+21bewNUUmvw6o9//OMK793ef//9SZIJEyZk9913z8MPP5ympqZ2bVqDVx1tiQrAukXwCtZBy19N2rr0c+t/u1qZZYsttshRRx2VpqamXHTRRd0+52677ZbjjjsuDQ0NOeecc9LU1JQvfelLKRaLthgE+o1VDbV25LbbbktdXV322muvFY61hrzq6uoyadKkbo/jybIrUD/0oQ9lwYIFufLKK1epbwC9odx57Oabb54kufbaa1d4k3R1LFmyJLfeemvb+QcNGtRlUGB5u+66az72sY/ljTfeyGWXXVaxfgGsCY888kiSZLvttqtIvdbVAg855JAUCoW2cb2jCxhuv/32JMlBBx20WuctFov553/+50yfPj3vfe97c9VVV3VrNReA3tJ6UcGqbJPdkaqqquy4445JstKLbFsvCNtnn30qds7uOOigg/K+970vjz32WG666aY1em5g3bD99ttngw02SENDQ+bOndvu2L333pvNN988w4YNy9ixY/P222/n4YcfbtemNXjVGuACYN0meAXroHvuuSfz58/PFlts0bYv9aGHHpqqqqrcfvvtWbhwYaf3P+mkk1JfX59f//rXeeaZZ7p93tYtB//whz9k8uTJeeKJJzJhwgRbDAL9wuqEWlfmxRdfzKOPPpq99tprpVunTJ8+PaVSKfvuu2+GDBlS1jieJF/4whdSKBRyySWXZNGiRWX3D6A3lDuPPfroo5Mk//M//5OPfexj+cpXvpJf/epXefzxx9PS0rLK/bjpppvS0NCQMWPGZKuttkqSLoMC73baaaelqqoqP/3pT7s1bgP0pqVLl+bZZ5/NN77xjdx3333ZfPPNc8ghh6x23SVLlrStsHLooYcmSfbYY48OL2BYunRp28qCo0ePXq1zf/7zn8+NN96Y4cOH5+qrr65YkAygp7ReVHD11Vev1lz23RYvXpwkqa2tXeHYzJkzs8EGG2SPPfao2Pm6o6qqKlOnTk2SXHDBBRVbZRGgVaFQaFutavmtBBcsWJB58+Zl7NixSdL23+W3JHzjjTfy5z//OYVCoe04AOs2wStYB7UGAA4++OC27f0222yzvP/978/SpUszY8aMTu+/0UYbZcqUKWlubs4FF1zQ7fMuv+XgH//4x9TX1+db3/qWLQaBfmF1Q63v1npV6d57773CsVKplP/+7/9O8rcP+ssZx5Nkp512yr777puFCxfmkksuKatvAL2l3HnspEmT8m//9m8ZOnRoFixYkGuvvTZnnXVWDjnkkOy55575yle+0u3ts1fWj9YxOOk8KLAyI0eOzAEHHJBFixblv/7rv8ruA0BPmzJlSkaOHJmRI0dm9OjR2XfffXPllVfmoIMOyrXXXpshQ4as9jlag6x77LFHtt5667bbO7qA4c0332zbcmp1t5FtXTnrW9/6VrbccsvVqgWwJrReVPCLX/wi++yzT77xjW/khhtuyNNPP73KNV977bU89NBDSbLCqn+PP/54nn/++Xz0ox9NdXX1qnd8Fe2zzz7ZeeedM2/evLbVEQEqqTV41bq1YLLiFoK77rprBgwY0K5N6//vsMMOWX/99Veoe/3117fNo1f2b1Uu0l0dXfXnhRdeWKP9AeiPBK9gHbN48eJ226Isr/Xq0u68kD3++OPznve8JzfffHMee+yxbp9/t912a1ua+uijj7bFINBvrG6o9d1mzpyZmpqafOQjH1nhWGvIa/PNN8+ECRPabm8d17v7huTUqVNTXV2dyy+/vG3LAoC+alXnsZ/61Kdy55135tvf/nb+/u//PiNHjkxVVVXefPPNXHvttTnkkENW2DKgM88991weeOCBdtsLvrsf3X0T9dRTT82AAQNy9dVX59VXX+12HwDWhL322iuHHXZYDjvssBx66KH54Ac/mPXWWy833nhjfvCDH1RkC9fW8fLwww9vd/shhxyyyhcwdFfrh2n/+q//mueff75HzgGwfIh1Zf/K8dnPfjYnn3xyBg4cmBdeeCFXXnll/uVf/iX77bdf9tprr3znO9/JX/7yl27VamxszAMPPJATTzwxS5YsycYbb5xJkya1a9PZBWFryhe/+MUkyY9+9KOKbh0OkPxtm8AHHnigbWW91uBV60pWAwcOzM4775w5c+a0rW7dukJWR9sMbrXVVm3z6JX9a105e03pqj/19fVrtD8A/VFNb3cAWLNuuummNDY2Zvfdd8+IESPaHdt3333z1a9+NY8++miefPLJ7LDDDh3WGTp0aI4//vj8x3/8R7773e+WdZV+6yTOZA7oL7oKA/z+97/P9OnTc8wxx3Sr3sKFC/PAAw9k7NixHV41lfztA6lW++yzT4YMGdKtcTxJtttuuxxyyCGZPn16pk2blrPOOqtb/QPoDaszj23dkrU1GPWXv/wlv/3tb3PBBRfkrbfeyplnnpkbb7yxW/1o3ep17733XmG1l0MPPTQ/+MEP2oICKxvDl7fVVlvl8MMPz7XXXpsf/ehH+fd///du9QFgTTjhhBPahfyTZfPeqVOn5rrrrktVVVW+/vWvr3L95557Lvfff/9Kg6ybb7559txzz/zhD3/IjBkz2ubR73nPe1IoFFIqlfLGG29k2223XeXz/+d//mc+97nP5cEHH8yUKVNy1VVXZdiwYatcD2Bl9tprr2yyySYdHi9n1ZNCoZBTTz01xxxzTH73u9/l3nvvzaOPPppnnnkmCxYsyCWXXJLf/va3ueqqq1a6kt/111+/0vNtvvnmufDCC1eY2952222pr6/PXnvt1e0+VtoHPvCBTJgwIbNnz84111yTz3zmM73WF6D/GTlyZNZff/0sXLgwjz32WEaPHp377rsvG220UbttqMeOHZs5c+bk0Ucfza677toWzuooeDVmzJicd955HZ73zDPPzHPPPVfZB9OJrvoDwOoTvIJ1TOuL6xdffDGf/OQnVzjeukrL9ddfnzPOOKPTWpMnT84VV1yR//mf/2m3zCrAuqZSodZWd9xxR4rF4kqvKl0+5NUaIGjV+qHVL3/5y26N40ny+c9/PjfccEOuueaaHHfccdl88827vA9Ab6jkPHaDDTbIMccck8022ywnn3xynnrqqcybN2+FMfzdlt/q9aGHHlppP2pqatLU1NQuKNCZk08+Ob/+9a9z3XXX5XOf+1yX7QF605AhQ3LGGWfk7rvvzq9+9aucfvrpWW+99VapVusqhVVVVfmHf/iHFY6//PLLbe1ax9MBAwZkhx12yBNPPJG5c+e2rUSwKgYPHpyLL744n/3sZ/PQQw+1ha/Mh4FKWlmIdXmrst3UhhtumKOOOipHHXVUkuSVV17Jr371q0ybNi0vv/xyvvrVr+biiy9e4X5bbbVVxowZkySprq7O+uuvn1122SUf/ehHU1tb267t/Pnz83//93/Zd999M3DgwLL7WElf/OIXc9RRR+U///M/84lPfCKDBw/u1f4A/UehUMiYMWNy22235f7778+wYcPy5z//Ofvuu2+7dmPHjs1PfvKT3Hfffdlmm23y5JNPplAorNZcFID+RfAK1iGt26Iky16Qv/LKKx22veGGG/LP//zPqanpeJioq6vLiSeemK9//ev5/ve/n89//vMV7zPA2qCSYYCk8+X8W0NeNTU1K12hqnXLwO6M40myxRZb5Oijj86VV16Ziy66KN/85je77B/AmlbpeWyrPffcs+3/33jjjS6DV/fcc09efPHFJMnzzz/f6dZU3V3p8L3vfW8+/elP59JLL82FF17Yrk8AfVHrKirNzc159tlns/POO5ddY/kga0NDQ+bMmdNh23dfwPDRj340TzzxRGbMmJFjjz22/AewnCFDhuSSSy7Jcccdl0ceeSSf+cxncuWVV+a9733vatUFWJPe+9735p/+6Z9SX1+fc889N3/4wx/y9ttvZ9CgQe3albPiSev7Eh//+Mcr3t9y7bbbbvnoRz+aO+64I5dffnn+6Z/+qbe7BPQj48ePz2233ZZ77703w4YNS6lUWiFQtccee6Sqqir33Xdftt1227S0tOR973tfNtxww17qNQB9TVXXTYD+ovVq0n322SdPPPFEh/9GjBiRBQsW5K677uqy5pFHHplhw4blvvvu61Z7gP7m3WGAOXPmrPBv0aJFSZaFAYrFYqf13n777fz+97/PTjvttNKr7VtDXsVicaXnmjdvXpJ0exxPkhNPPDH19fX59a9/3XZ/gL5kVeexpVKp07rPPvts2/9350P21n4ce+yxHfbh4Ycfbrfta3eccMIJGTx4cG644Yb8+c9/7tZ9AHrL8tui1NfXr1KN1iDrRhttlEcffbTDMfXII49M0n5FmGOOOSb19fV55JFHcu2113Z6nmKxmIceeqjTNkOHDs2ll16anXbaKc8++2w+85nPZMGCBav0uAB60/vf//4ky4Kxb7755mrVmjlzZmpqavLRj360El1bbaeddloKhUIuvfTS1X5sAMtr3S7wgQceyOzZs5Mk48aNa9dm6NChGTlyZKdtAFi3CV7BOqKlpaXtatKDDz6407YHHXRQku4tdV1bW5tTTjklSXLVVVetZi8B1j6VDrXefffdaWxsXOlVpc8++2weeOCBDBgwIPfcc0+H5/rCF76QpPtbFmy88caZPHlyisViLrjggjKfAYCetTrz2BNPPDE//elP8/rrr6/Qdv78+fnyl7+cJNl1110zbNiwTmsvXrw4v/vd77rsx8CBA9u2JejuOLzBBhvkuOOOS0tLS372s5916z4AvWHx4sX5zne+kyTZeuuts+22265SnV/96ldJkv3337/TFQpbx/XlL2DYZJNN8rWvfS1J8u///u/50Y9+lLfffnuF+95///351Kc+lRkzZnTZn/XWWy+XXnppdtxxxzzzzDP5zGc+s9K/HQC9qbsXFdTW1maDDTZY5fMsXLgwDzzwQMaOHZv3vOc9q1ynkkaNGpUDDjggixYtyn/913/1dneAfmTUqFEZOnRoFi5cmN/85jdZb731MnLkyBXajR07NosWLWp7nd8a2AKAxFaDsM5ovZp0vfXWy0c+8pFO2x500EG58MILc/vtt2fhwoVd1j7kkENy8cUX56mnnqpMZwHWEuWGAS688MJcf/31nV4xettttyVZFuR6t9aQ11577dXpm6gHHnhgvv/977eN4+uvv35XDyXHH398rrnmmtx0002pra3tsj3AmrI689iXX3455513Xs4///xsv/32GTFiRKqqqvLyyy/n4YcfTnNzc9773vfm3HPP7bIfrVu9brfddtlpp5267Mf06dPL2vbwuOOOy1VXXdWt+TfAmvCTn/yk7YOlUqmU1157LY888kjefPPNDB48OOedd17bltrLa12lamXGjRuXk046qW0Lq67m0OPGjcvmm2+el156KXfddVfbPPqggw5KVVVVvvzlL+eCCy7If/3Xf2XXXXfNRhttlCVLluTxxx/PSy+9lKqqqhxyyCHderzrr79+fvrTn2bKlCl58sknc+yxx+byyy+3hQzQZxx55JE54ogjsv/++2fIkCHtjj355JNt2wjuvffeq/W6/o477khzc/NK35foTaeeempuvvlmF/8CFVVVVZWxY8fmjjvuyJtvvpmPfOQjqapacd2SsWPH5sorr2xbdW9tWvHqgQceyJlnntnh8f/v//v/MmXKlDXYI4D+R/AK1hGtH9ZPmjSpyxfeW2+9dXbZZZc8/PDDmTFjRpcfcFVXV2fq1Kk59dRTK9VdgLVCpUOtzc3Nuf3227P11ltnhx12aHespaUlv/nNb5J0/QHV8OHDs/vuu2fOnDmZMWNGjjnmmC4fy3rrrZfPfe5z+d73vpd33nmny/YAa8rqzGMvvPDC3HXXXfnf//3fPPPMM/nf//3fNDQ0ZMiQIdltt93ykY98JJ/61KdW+OCqs350NQYnyZ577plNNtmkbaXD7mzRMmTIkPzjP/5jvv3tb3fZFmBNuPvuu9t9XVdXl2HDhuWQQw7JZz/72ZVui52k0639Nt5447Yg64gRI7LLLrt02odCoZADDjggF1988QoXMBxwwAH5wAc+kGuuuSZ33XVXHn/88SxatCh1dXXZaqutst9+++UTn/hEtttuu24/5g022CCXX355W/jqs5/9bC677LJuXcgA0NOeeeaZfPnLX87Xvva1jBo1KsOGDUupVMoLL7yQRx99NEnyvve9L2efffZqnad1lde9996703avvvpqp2Hb/fffP8cee+xq9WV5W2+9dQ4//PD84he/qFhNgGRZiOqOO+5IsixgtTLL377ttttm4403XiN9q4Tnnnuu3Xbh7/bWW28JXgGspkKpq/VpAQBYqX/5l3/JDTfckCOPPDJf//rXu2x/xBFH5OGHH86Xv/zlfOQjH2nbTvCJJ55IksyePTtTpkzJZz/72Zxxxhnt7vuHP/whxx13XIYMGZI//OEPGThwYKfn+tnPfpavfvWr2WmnndrCApMnT869996badOmrTQE0NDQkH322SevvfZakmVburw7AAYAAAB07mMf+1jmz5+fK664IhMmTOiwXet2VrfddluGDx+eJDnzzDNz/fXX55RTTsnnP//5trZPPPFEfv/73+eee+7Js88+mwULFqSpqSnvec978r73vS/77LNPjjjiiBUuVrjwwgtz0UUX5bDDDmtbFasjjY2N2XPPPbPddtu1vZfwbq3vXXRlypQpbSGw1vcjzj333Bx++OEd3qf1eevo/YiXX345++67b9sFY3PmzMngwYO77AsAAPQkwSsAgD7im9/8Zq644opcffXVHV5dBQAAANATZs6cmZNPPjlTp07NP/3TP/V2dwAAYK2w4ia1AAD0iu233z6nnnpq9thjj97uCgAAALCOGTRoUE455ZRuba8NAAAsY8UrAAAAAAAAAACAMlnxCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4NVa6IknnsgTTzzR290AWGcYdwHWPGMvwJpl3AVY84y9AGuWcRcA6Ak1vd0BytfU1NTbXQBYpxh3AdY8Yy/AmmXcBVjzjL0Aa5ZxFwDoCVa8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKFNNb3cAAOhdTU1NKRaLFa1ZU1OT2traitYEAAAAAAAA6EsErwBgHdbU1JS5c+emVCpVtG6hUMjo0aOFrwAAAAAAAIB+S/AKANZhxWIxpVIpbzfUptRSmR2IC1UtGVS/bBUtwSsAAAAAAACgvxK8AgBSaqlKS4WCV5WpAgAAAAAAANC3+WwUAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKFNNb3cAAIDyNDU1pVgsVrRmTU1NamtrK1oTAAAAAAAA+jPBKwCAtUhTU1Pmzp2bUqlU0bqFQiGjR48WvgIAAAAAAIBuErwCAFiLFIvFlEqlvN1Qm1JLZXaNLlS1ZFD9slW0BK8AAAAAAACgewSvAADWQqWWqrRUKHhVmSoAAAAAAACwbvE5GwAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKFNNb3cAAACA1dfU1JRisVjxujU1Namtra14XQAAAAAAWNsJXgEAAKzlmpqaMveRR1LqgdqFJKN33ln4CgAAAAAA3kXwCgAAYC1XLBZTSrLR4w9lQMPiitVdWj8kr4/aNcViUfAKAAAAAADeRfAKAACgnxjQsDi1i9/q7W4AAAAAAMA6oaq3OwAAAAAAAAAAALC26ffBq8cffzynnHJKJkyYkF122SUHHHBALr744hSLxbLq3Hffffnc5z6XcePGZbfddsvhhx+eX/7yl926b1NTUw488MCMHDkyH/7wh1flYQAAAAAAAAAAAH1Iv95qcM6cOTnuuOPS3Nyc/fbbL5tuumlmzZqV888/Pw8++GAuuuiiFAqFLuvccsstOe2001JXV5cDDjgggwcPzq233ppzzjknTz75ZM4+++xO7//d73438+fPr9TDAgAAAAAAAAAAelm/XfGqubk5Z511Vt5+++388Ic/zPnnn5/TTz8906dPz9ixYzNz5szccMMNXdZZtGhRvvKVr6SmpiZXX311vv71r+fMM8/Mf//3f2fEiBG54oor8sADD3R4/9mzZ+eyyy7Lv/7rv1by4QEAAAAAAAAAAL2o3wavZs+enWeeeSYTJkzIxIkT226vra3N1KlTkyQ///nPu6xz8803Z+HChTnwwAOz4447tt0+dOjQnHjiiZ3WWbx4cb70pS/l/e9/fz75yU+uzsMBAAAAAAAAAAD6kH4dvEqSvfbaa4VjY8aMSX19ff74xz+mqamp0zr33HNPh3Vab7v33ntXet9vfOMbefPNN/PNb36zrL4DAAAAAAAAAAB9W01vd6CnPPPMM0mSrbfeeoVj1dXVGT58eJ588sk8//zz2W677TqsM2/evA7rbLLJJqmvr8/LL7+cxsbG1NXVtR373e9+l+uvvz7f+MY3ssUWW6zmo1lRqVRKQ0NDxesCrM3q6+t7rHZ/HXcbGxvXytrrMt8z+pKeHHeT/jv29oSe/v01PkDfYc4LsGaZ8wKseea8AGtWT895ob/rt8GrxYsXJ1m2JeDKDB48OEny1ltvrVadIUOGpKGhIYsWLWoLXr322mv58pe/nA9/+MM54ogjVqn/XVm6dGkee+yxHqkNsLYaM2ZMj9U27pavNbzM2sP3jHL15LibGHv7EuMD9B3mvABrljkvwJpnzguwZvX0nBf6u34bvOpN55xzTpqbm/ONb3yjx84xYMCAbL/99j1WH4D2+uu429jY2GMfpo8YMaLdapBUhu8Z65L+Ovb2hJ4cGxLjA6wrjLsAa56xF2DNMu4CAJXWb4NXQ4YMSZIsWrRopceXLFmSJFlvvfVWq867V8T69a9/nTvuuCPf/va38973vrf8jndToVCw5B/AGmTcLV9dXZ3nbC3je0ZfY+ztO4wPsG4w7gKsecZegDXLuAsAVFpVb3egp2yzzTZJkmeffXaFY83NzXnhhRdSXV2dLbfcstM6I0aM6LDOggUL0tDQkM0226zt6u9HH300SXLGGWdk5MiR7f4lySuvvNLuawAAAAAAAAAAYO3Tb1e8mjBhQqZNm5a77747J5xwQrtjDzzwQBoaGjJmzJjU1tZ2WmfPPffMjBkzcvfdd+eAAw5od+zuu+9OkowfP77ttt133z0NDQ0rrXXdddelrq5uhToAAAAAAAAAAMDapV8Hr0aMGJHZs2dn1qxZmThxYpKkqakpF1xwQZLk6KOPbmvf2NiYF198MXV1ddliiy3abp80aVL+3//7f5kxY0amTJmSHXfcMcmyrQenTZuWJDnqqKPa2u+///7Zf//9V9qn6667Luutt16++c1vVvbBAgAAAAAAAAAAa1S/DV5VV1fn3HPPzbHHHpuTTz45+++/fzbZZJPMmjUrf/rTn7L33nvnoIMOamv/8MMPZ8qUKRk/fnyuvPLKttuHDh2ar371q/nCF76QT3/60znggAMyePDg3HrrrZk/f34mT56csWPH9sZDBAAAAAAAAAAAekm/DV4lyR577JFf/OIXufDCCzNr1qw0NDRkyy23zOmnn55jjz02hUKhW3UmTZqUDTfcMNOmTcuNN96YYrGY7bbbLieddFI+8YlP9PCjAAAAAAAAAAAA+pp+HbxKklGjRuWHP/xhl+0mTJiQJ554osPj48ePz/jx41erL53VBwAAAAAAAAAA1h5Vvd0BAAAAAAAAAACAtY3gFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUqaa3OwAAANAXNTU1pVgsVrxuTU1NamtrK14XAAAAAABYswSvAAAA3qWpqSmPPjo3LS2liteuqipkp51GC18BAAAAAMBaTvAKAADgXYrFYlpaShk2bElqa1sqVrepqSrz5w9OsVgUvAIAAAAAgLWc4BUAAEAHamtbUlfX3NvdAAAAAAAA+qCq3u4AAAAAAAAAAADA2kbwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQppre7gAA0D81NjZWvGZNTU1qa2srXhcAAAAAAACgXIJXAEBFFQqlpFTKvHnzKl87yeiddxa+AgAAAAAAAHqd4BUAUFmFUlIoZKPHH8qAhsUVK7u0fkheH7VrisWi4BUAAAAAAADQ6wSvAIAeMaBhcWoXv9Xb3QAAAAAAAADoEVW93QEAAAAAAAAAAIC1jeAVAAAAAAAAAABAmQSvAAAAAAAAAAAAyiR4BQAAAAAAAAAAUCbBKwAAAAAAAAAAgDIJXgEAAAAAAAAAAJRJ8AoAAAAAAAAAAKBMglcAAAAAAAAAAABlErwCAAAAAAAAAAAok+AVAAAAAAAAAABAmQSvAAAAAAAAAAAAyiR4BQAAAAAAAAAAUCbBKwAAAAAAAAAAgDLV9HYHAACgXE1NTSkWixWvW1NTk9ra2orXBQAAAAAAoP8RvAIAYK3S1NSUuXPnplQqVbx2oVDI6NGjha8AAAAAAADokuAVAABrlWKxmFKplKda3k5jKhe+qksh21UNSrFYFLwCAAAAAACgS4JXAACslRpTSkNaKlixqoK1AAAAAAAA6O98ugQAAAAAAAAAAFAmK14BAAAAAABQcU1NTSkWixWvW1NTk9ra2orXBQCAcgleAQAAAAAAUFFNTU2Z+8gjKfVA7UKS0TvvLHwFAECvE7wCAAAAAACgoorFYkpJNnr8oQxoWFyxukvrh+T1UbumWCwKXgEA0OsErwAAAIAu9cQ2MbaIAQDo/wY0LE7t4rd6uxsAANAjBK8AAACATjU1NWXu3LkplSq7UUyhUMjo0aOFrwAAAACAtVK/Dl49/vjjueiii3LfffelsbExW265ZQ477LAce+yxqanp/kO/7777Mm3atDz88MNZunRptt1223zyk5/MEUccsULbBx54ILfddltmz56d+fPnZ/Hixdl0003z/ve/PyeccEK23nrrSj5EAAAA6HHFYjGlUilPtbydxlQmfFWXQrarGmSLGAAAAABgrdVvg1dz5szJcccdl+bm5uy3337ZdNNNM2vWrJx//vl58MEHc9FFF6VQKHRZ55Zbbslpp52Wurq6HHDAARk8eHBuvfXWnHPOOXnyySdz9tlnt2t/6qmn5o033shuu+2Wgw46KDU1NXnwwQdz3XXX5cYbb8yll16a3XffvaceNgAAAPSYxpTSkJYKVauqUB0AAAAAgN7RL4NXzc3NOeuss/L222/nJz/5SSZOnJgkmTp1ao477rjMnDkzN9xwQw4++OBO6yxatChf+cpXUlNTk6uvvjo77rhjkuTkk0/OJz7xiVxxxRWZNGlSxowZ03afz3zmMznkkEPy3ve+t12tadOm5Xvf+16+8pWv5IYbbqjwIwZgXdDU1JRisVjRmo2NjRWtBwAAAAAAALCu6JfBq9mzZ+eZZ57JhAkT2kJXSVJbW5upU6dm8uTJ+fnPf95l8Ormm2/OwoULc/jhh7eFrpJk6NChOfHEE3PmmWfm5z//ebvg1QknnLDSWv/wD/+QH//4x3nyySfzl7/8JRtssMFqPkoA1iVNTU159NG5aWmpzNY+AAAA65qeuJglSWpqamyZCgAAAOuofhu8SpK99tprhWNjxoxJfX19/vjHP6apqanTN0XuueeeDuu03nbvvfd2q0+FQiHV1dVJ0vZfAOiuYrGYlpZShg1bktraSm3vkyxeXJMFC+oqVg8AAKAvampqytxHHklPXMpSSDJ6552FrwAAAGAd1C+DV88880ySZOutt17hWHV1dYYPH54nn3wyzz//fLbbbrsO68ybN6/DOptssknq6+vz8ssvp7GxMXV1nX9offPNN2fJkiXZbbfdst5665XxaADgb2prW1JX11yxeu+8U1WxWgAAAH1VsVhMKclGjz+UAQ2LK1Z3af2QvD5q1xSLRcErAAAAWAf1y+DV4sXL3jwZOnToSo8PHjw4SfLWW2+tVp0hQ4akoaEhixYt6jR49fzzz+frX/96qqurc8YZZ3TZ/+4olUppaGioSC2A/qK+vr7Havf2uNvY2Nhr5+5r1vXnoicf/9ry3PZ0P9eW56Ev6MlxN+ndsXdt+zlb2/rL2sffn76jP895oSe1jjUDGhandnHn7wmuTn36n/4854We5nUKq8qcF2DN6uk5L/R3/TJ41Ze8/vrr+Yd/+Ie88cYbOeecc7LHHntUpO7SpUvz2GOPVaQWQH8xZsyYHqtt3O07WlekpPI8t8t4HrqvJ8fdpH+PvWvbz9na1l/WLn6+ymPOC32Tsaz/MueFvsvY23+Z8wKsWT0954X+rl8Gr4YMGZIkWbRo0UqPL1myJEm63PKvqzpdrYj1+uuv5zOf+UyeeeaZnHXWWZk8eXLXne+mAQMGZPvtt69YPQA619vjbmNjozeT/mrEiBFdbvHbn/Xkz8La8tz29O/D2vI8rAt6c+xd237O1rb+svbx92fd0NtzXuhJ/lbSVxl76c+MvfRFxl0AoNL6ZfBqm222SZI8++yzKxxrbm7OCy+8kOrq6my55Zad1hkxYkTmzp2bZ599NqNHj253bMGCBWloaMhmm2220on9q6++mmOPPTZPP/10vvKVr+TTn/70ajyiFRUKBUv+AaxBxt2+o66uzveih3hul/E89B39eexd237O1rb+snbx89V39OdxF3qasYxVZeyFVWfsZVUYdwGASqvq7Q70hAkTJiRJ7r777hWOPfDAA2loaMhuu+2W2traTuvsueeeHdZpvW38+PErHHv55ZczefLkPP300/nqV79a8dAVAAAAAAAAAADQu/pt8GrEiBGZPXt2Zs2a1XZ7U1NTLrjggiTJ0Ucf3XZ7Y2Njnnrqqbz44ovt6kyaNCnrr79+ZsyY0W6/50WLFmXatGlJkqOOOqrdfebPn59Pf/rTee655/Ktb31rheMAAACNjY1paGio2L/GxsbefkgAAAAAALDO6ZdbDVZXV+fcc8/Nsccem5NPPjn7779/Ntlkk8yaNSt/+tOfsvfee+eggw5qa//www9nypQpGT9+fK688sq224cOHZqvfvWr+cIXvpBPf/rTOeCAAzJ48ODceuutmT9/fiZPnpyxY8e2O/fkyZMzf/787LTTTpk/f34uvPDCFfp32GGHZfjw4T33BAAAAH1SsVhIqZTMmzevt7sCAAAAAACspn4ZvEqSPfbYI7/4xS9y4YUXZtasWWloaMiWW26Z008/Pccee2wKhUK36kyaNCkbbrhhpk2blhtvvDHFYjHbbbddTjrppHziE59Yof38+fOTJI8++mgeffTRldYcP3684BUAAKyDmpsLKRSStxtqU2qp3ALEVdXFDKwrVqweAAD0RU1NTSkWKz/vrampSW1tbcXrAgAA/V+/DV4lyahRo/LDH/6wy3YTJkzIE0880eHx8ePHZ/z48d06Z2d1AAAAkqTUUpWWCgavClX9chd5AABo09TUlLmPPJJSD9QuJBm9887CVwAAQNn6dfAKAAAAAABY+xWLxZSSbPT4QxnQsLhidZfWD8nro3ZNsVgUvAIAAMomeAUAAAAAAKwVBjQsTu3it3q7GwAAAEkS+1EAAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZarp7Q4AAAAAwNqmqakpxWKx4nVrampSW1tb8boAAFAuc14A6JrgFQAAAACUoampKXMfeSSlHqhdSDJ65519EAUAQK8y5wWA7hG8AgAAAIAyFIvFlJJs9PhDGdCwuGJ1l9YPyeujdk2xWPQhFAAAvcqcFwC6R/AKAAAAAFbBgIbFqV38Vm93AwAAeow5LwB0rqq3OwAAAAAAAAAAALC2EbwCAAAAAAAAAAAok60GAQAAAAD6mKamphSLxYrXrampSW1tbcXrAgAAwLpI8AoAAAAAoA9pamrK3LlzUyqVKl67UChk9OjRwlcA7yLwCgDAqhC8AgAAAADoQ4rFYkqlUp5qeTuNqVz4qi6FbFc1KMViUQgAYDkCrwAArCrBKwAAAACAPqgxpTSkpYIVqypYC6D/EHgFAGBVCV4BAAAAAACwzhN4BQCgXGZ8AAAAAAAAAAAAZRK8AgAAAAAAAAAAKJOtBgEAAAAAANYCTU1NKRaLFa9bU1OT2traitcFAID+TvAKAAAAgH6t0h9SNzY2VqwWAHRXU1NTHn10blpaShWvXVVVyE47jRa+AgCAMgleAQAAANBvNTU1Ze7cuSmVKv8hNQCsScViMS0tpQwbtiS1tS0Vq9vUVJX58wenWCwKXgEAQJkErwAAAADot4rFYkqlUt5uqE2ppaoiNauqixlYV/ltngDWNNvWrZ1qa1tSV9fc290AAAAieAUAAADAOqDUUpWWCgWvClWVqQPQm2xbBwAAsPoErwAAAAAAYB1j2zoAAIDVJ3gFAAAAAADrKNvWAQAArDrrogMAAAAAAAAAAJTJilcAVERTU1OKxWLF69bU1FiWHgAAAAAAAIA+R/AKgNXW1NSUuY88klIP1C4kGb3zzsJXAAAAAAAAAPQpglcArLZisZhSko0efygDGhZXrO7S+iF5fdSuKRaLglcAAAAAAAAA9CmCVwBUzICGxald/FZvdwMAAAAAAAAAelxVb3cAAAAAAAAAAABgbSN4BQAAAAAAAAAAUCZbDQIAAADQJzQ1NaVYLFa0ZmNjY0XrAQAAAEArwSsAAAAAel1TU1MefXRuWlpKvd0VAAAAAOgWwSsAAAAAel2xWExLSynDhi1JbW1LxeouXlyTBQvqKlYPAAAAAFoJXgEAAADQZ9TWtqSurrli9d55p6pitQAAAABgeYJXAAAAAMAqaWpqSrFYrHjdlpaWVFVVLjTX2NhYsVoAAAAArQSvAAAAAICyNTU15dFH56alpVTx2qVSUihUvCwAAABARQleAQAAAABlKxaLaWkpZdiwJamtbalY3cWLa7JgQV3ebqhNqaUyq15VVRczsK7yK3MBAAAA6zbBKwAAAABgldXWtqSurrli9d55Z1nYqtRSlZYKBa8KFdy2EAAAAKCVdxwAAAAAAAAAAADKJHgFAAAAAAAAAABQJlsNAvRRTU1NKRaLFa9bU1OT2traitcFAAAAAAAAgHWJ4NU6oCfCG4Ib0LOampry6KNz09JSqnjtqqpCdtpptN9hAAAAAABYw1x0DQD9i+BVP9fU1JS5c+emVKpseKNQKGT0aMEN6CnFYjEtLaUMG7YktbUtFavb1FSV+fMHp1gs+v0FAAAAAIA1yEXXAND/CF71c8ViMaVSKU+1vJ3GVGYSV5dCtqsaJLgBa0BtbUvq6pp7uxsAAAAAAMBqctE1APQ/glfriMaU0pBKTeCqKlQHAAAAAAAA1i0uugaA/kOCBgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoExrJHg1Z86cfPazn10TpwIAAAAAAAAAAOhxNT1Z/P77788Pf/jD3HPPPT15GgAAAAAAAAAAgDWq7ODV22+/nSuvvDL/8z//k9deey0bbbRRPvKRj+SYY47JoEGDkiSPPfZYvvOd7+See+5JqVTKgAEDctRRR1W88wAAAAAAAAAAAL2hrOBVU1NTJk+enLlz56ZUKiVJnnnmmTzwwAOZNWtWrrjiilx22WX5j//4jxSLxdTU1OSwww7LP/3TP2XzzTfvkQcAAAAAAAAAAACwppUVvLriiivyyCOPpLa2Nocddlh22GGHLF68OLNmzcr999+f008/PTNmzEiS7Lvvvjn99NOz5ZZb9kjHAQAAAAAAAAAAektZwatbb701VVVVufzyy7P77ru33f6P//iPOeecc3LdddelUCjkS1/6UqZMmVLxzgIAAAAAAAAAAPQFVeU0fuaZZ7Lbbru1C121Ov7445Mk22yzjdAVAAAAAAAAAADQr5UVvFq8eHGGDx++0mOtWwqOGjVq9XsFAAAAAAAAAADQh5UVvCqVSqmurl7psdbbBw4cuPq9AgAAAAAAAAAA6MPKCl4BAAAAAAAAAACQ1JR7h1tuuSX33nvvSo8VCoUOjxcKhcycObP8HgIAAAAAAAAAAPQxZQevGhoa0tDQUPbxQqFQ7qkAAACg32pqakqxWKx43ZqamtTW1la8LgBAORobG/t0PQAAgEooK3h1xRVX9FQ/eszjjz+eiy66KPfdd18aGxuz5ZZb5rDDDsuxxx6bmpruP/z77rsv06ZNy8MPP5ylS5dm2223zSc/+ckcccQRK21fLBZz2WWX5frrr89zzz2X+vr6jBs3Lp///OczcuTISj08AAAA1kJNTU2Z+8gjKfVA7UKS0TvvLHwFAPSKYrGQUimZN29eb3cFAACgx5UVvBo/fnxP9aNHzJkzJ8cdd1yam5uz3377ZdNNN82sWbNy/vnn58EHH8xFF13UrZW4brnllpx22mmpq6vLAQcckMGDB+fWW2/NOeeckyeffDJnn312u/alUilTp07NzJkz8773vS9TpkzJq6++mptuuil33XVXfvrTn2aPPfboqYcNAABAH1csFlNKstHjD2VAw+KK1V1aPySvj9o1xWJR8AoA6BXNzYUUCsnbDbUptVRVrG5VdTED6yq/WigAAMDqKHurwbVFc3NzzjrrrLz99tv5yU9+kokTJyZJpk6dmuOOOy4zZ87MDTfckIMPPrjTOosWLcpXvvKV1NTU5Oqrr86OO+6YJDn55JPziU98IldccUUmTZqUMWPGtN3nN7/5TWbOnJlx48bl0ksvbXuz+8ADD8wJJ5yQs88+OzNmzEh1dXUPPXoAAADWBgMaFqd28Vu93Q0AgIortVSlpYLBq0JV5WoBAABUSr99pTJ79uw888wzmTBhQlvoKklqa2szderUJMnPf/7zLuvcfPPNWbhwYQ488MC20FWSDB06NCeeeOJK67R+PXXq1HZXGE+cODHjx4/P008/nXvvvXfVHxwAAAAAAEAFNTY2pqGhoWL/Ghsbe/shAQBAjytrxavvfOc7q3Wyf/3Xf12t+5dj9uzZSZK99tprhWNjxoxJfX19/vjHP6apqanT7RfuueeeDuu03rZ8iOqdd97JQw89lPr6+pVuJ/ihD30o9957b2bPnp33v//95T0oAAAAAACACioWCymVknnz5vV2VwAAYK1TVvDq0ksvTaFQSKlU6vZ9CoVC2/+vyeDVM888kyTZeuutVzhWXV2d4cOH58knn8zzzz+f7bbbrsM6rS80VlZnk002SX19fV5++eU0Njamrq4uzz33XJqbmzN8+PCVbiXYWmd1X8CUSqU0NTWt9FhVVVVqav72rS0Wi2lpaU4pLSs2LiSF5fpZKjZ3fNJ3tV26dGmHfSgUChkwYEC7th393JTTNkm7oFw5bZc9Dyt5Dlah7YABA9p+tnuqbXNzc5qbO/5+lNO2pqYmVX9dirsvtG1paUmxWOywbXV1ddvvT19oWyqVsnTp0oq0Xf73s7O2TU1N7Z7PZW07/tmpqiqkpuZvixg2Na38e7F0aVb4PnX0e5ys+PvZUdt39zdJlnbxt2LAcn8fOmq7tKW0Yt1Ofu87C9KurnLG3Uo8pytr29zcnKVLm1NdveL3t1BIBgxYfoxuTkffgne3Xfb7W+xw+f/q6prl2nb8e/PutsVSKYVOfg6W/xkolkrp7Cdm+QlLsVjs9Hnr7+Nuq5aWljQ3d/zYClVVqSr8ddwttaTUyfOwvLVh3H33+JhOnocUCilUV3WrbamQtvVgyxnPk85/l9fUGFGp+VY5bXty3E36xtjb0bi7rO3qjb2djU/G3vLbrm1z3uXrtJRK6eSVWKqSVP/1eeiqbfNy3/++Pva2pJTm6nfPeY29XbU15zXnTfrOuNuqubmlw9ehy9pWpaqq0Na2ubnjZ2L517aVnPMWqv52bF0ddxNz3lVpa85rzttWtw+MvcufszvjaXfH3qVLq1MoJG831Ka5mJRKnYynhap2c97O2lbXtKRu8LLjfX3sbWpqavf8mvP237G3L4y7PTnnbWpqavcYlrfKn6+tw+Pu2vZeg8/XVq9tYtwFVk1ZwatTTjmlrOJ/+ctfMn369DQ2NrYLYK0JixcvTrJsS8CVGTx4cJLkrbfeWq06Q4YMSUNDQxYtWpS6urosWrSo7faO2idpa7eqFi5cmHPPPXelx7bddtv8/d//fZJlSwP/7ne/6/AP9sAN18/me45p+/q5O+9OS9PK//jUvmdotvjg+NRl2ffykksu6fBxbLTRRvnsZz/b9vWll16a119/faVt11tvvfzjP/5j29dXXnllXn755ZW2raura/dz+POf/zzPP//8StsOGDAgp512WtvXv/rVr/L000+vtG2SnH766W3//9///d958sknO2y7/DaSN954Yx599NEO25588smpr69Pkvzud7/LH//4xw7bnnDCCXnPe96TpUuXZtasWXnwwQc7bPvJT34yG220UZJlK7zdd999HbY94ogjMmzYsAwYMCD33ntvZs2a1WHbo446KltttVWSZM6cObnttts6bHv44Ye3BRfnzp2bm266qcO2Bx98cEaOHJkkeeKJJ/Kb3/ymw7b77bdfRo8enSR56qmnMn369A7bfvzjH29bXe65557Ltdde22Hb1u0+k+Sll17KVVdd1WHbD3zgA/ngBz+YJHnttdfy05/+tMO248aNy0c+8pEkyZtvvpmf/OQnHbbdbbfdss8++yRJGhoa8sMf/rDDtsOHD89WW70vybIXV9Om/W+HbbfffuPst99ObV9feOHdHbbddNNNM3z48LalvqdNm9bhJHmLLbbI4Ycf3vb1xRdfnLfffnulbd/znvfk0E3Wa/v656+8mcUdvOGwfk1VPrHp39pe9+qbWVhcSdtFC1N3553tArKdjRH/9m//ttLbK6G7426SfP/73+9wIr/lllvm6KOPbvv6oosu6nDZ9c022yyTJ09Osmw8v/POOztsu+GG9fn0p8e1fX311XPyxhsNK207dOjAHHvsnkmSpUur8oc//CFvvvnmStsOGFCbD3/w4LavH3zof7LwzddW2raqqjof/fBhKRSWfS9/9+bbmd/Q8Yvh47fYoO3/b3tjcZ55u+MXP5/ZbP2kftnf0JtuuimPP/54h21XZdxNkjvvvLPTsfS4447LxhtvnCT5/e9/nz/84Q8dtj3mmGOy+eabZ+nSpbn33ns7bXvooYdm+PDhSZKHH344//M//9Nh2wMPPDCbb755kuSVBc/m/x57oMO2o/+/PfPeTZfVXfDqC5n7f/d02Pb/23FMtl1v8yxcuDAvvfRSZsyY0WHbD3/4w9lll12SJC+88EJ+/etfd9j2Ax/4QMaPH58BAwZUdNzdfffdM2zYsNSlkKWNTZl/Z8fP79CthmWj0aOSJM1NTXn+trs6bPueYZsnu49JY2NjmpqacsEFF3TYdocddsghhxzS9vX555/fYds1MUYkyX/+5392OLftqblZT467Se+Ova3Hr7rq/ixevPK/fasy9i5duuyNsjl/vCNvLVq40rbG3r8pd+zdeOONUywWM2fOnIqOvVtvvXUKhUIee+yxTufHkyZNyvbbb58k+fOf/5ybb765w7YTJ07M0KFDs7R+SJ57e2lufWNxh20/8J66/H+DByVJXnxnaW58veO2Y2pL2TzL5g5rw9jbMnx421zP2Nv7Y6857zLG3e6Pu+uvv36S5IEHXszs2U912Paww3bN8OHL2j788MuZNevPHbY98MDR2WST9yap7Jx3px13zzZDhq3z46457zJ9ZdxNzHlbGXu7N/YeccQRSZKmpqrMmfNyfv/7jt/vLmfs3XvvXTNo0LLPQF5+5bk89sT9HbZtN/a+9mLXY+92a8/Yu+2226Zu1LZJqrK0sdGc96/629jbX+e8TU3L5rwdfU4zaNCgHH/88W1fT58+PS+++OJK29bU1OTEE0/MO++8k2TdHnd78n3eESNGpFQq5fHHH6/Yew0f//jHM2rUqBQKhcybN6/Pv887bty4fPCDH0yxWMxbb72VK664osO2O++8cyZOnJhk2e/RJZdc0mHbUaNGZdKkSRkwYIBxtw+Mu7Au6JHg1ZIlS3LJJZfkv//7v9PY2JgBAwbkqKOOWqUOUr7Fixfnscce61bbwanK6Kq6tq9fTCEd5W3rlmtbKpU6TTO/88477frQOjlbmaVLl7Zr29m+783Nze3aLlmypMO2LS0t7dq2hug6snzbroJxTzzxRFuiuaM3bls9+eSTGThwYJJlYcTO/PnPf059fX1KpVKXdV988cW2fi5cuLDTti+99FIaGhpSKBTy6quvdtr22WefbXteX3nllU7bPv/8820J7Y4m6K1eeOGFtqsRumr74osvtiXcu+rDK6+80va9e+21lb850+rVV19ta9vVc7ZgwYK2tl39PLz++uttbRsaVv4CqNVf/vKXtrad/V60mj9/WUi0s9+3JFmyZECeeWblAdF3K5WW/Uz87euOrz95++23263Q19kVJUny+qhd2/6/+bbbkg5+n4uD6vPyHh/829d33pl08ju6fB86GyN6y7vH3c6epyVLlrRr29mVLI2Njd0ez5uaqtr9DDQ1rfxK/iQpFqu6/fNSKCR1Q/725mtVdWdXPC7XtlTK0iHrJQ0rf+M2SbufgbcfeCBZ7ufy3V7Zbc9l426p1OV4virjbpIOX5y0evrpp7NgwYIkaftvR+bNm9c2znTVh5dffrntd/yNN97otG3rmFgqJQNqOx8Xagc1tX0/at/q+Gqa5K+1SqW89NJLXY67b7zxRtvvZFfj7l/+8pf8+U9/SgqFio67b775ZrbYYotsVzUoDVUtmd9J2w0LNW3zl3eqqrLyuPYyQwvVKZVKmTdvXpfj7qJFi7r9+7mmxojOrtzqqblZb1ozz2spzc0dX0CyqmNvqZQUqjr++2vs/Zvyx96/JClUfOwtlZY9192Zb7a+Tuhq3r1w4cIMHTIkr4/aNX955ZXkjY7fFH5ry+3y8ogRy/r72mvJ6x1/uNWw6RbJX8eytWHsTf421zP29u2x15x3JW2Nu38NXpXy1ludXx390kt1Wbp06F/7MKjTtq+8UpekruJz3pralqRUWufHXXPev9Xp6+NuYs670rbr+Nj70ksvZf3135P58wfnjTcGdtG2+2Pvm2/WZuDAZFB9U2oHdfx7lvTvsTdJtqta9lw1VJXMef9qXRp7+/Oct6Wlpd377B1dYJ2kba7w1y/W6XH3b+NMqcfe563kew2vvfZanp03LykU1or3eV9//fX86U9/SqFQ6PLztbfeequtv119vrZ48eK2usbdvj3uQn9RKJWzb2AXmpqacuWVV+a//uu/8uabb6aqqioHH3xwTjnllAwbNqxSp+mWU089Nbfcckt+8IMf5O/+7u9WOH7QQQflySefzI033tjpVoN///d/n7lz5+ZXv/pV2wo8y9t9993T0NCQP/7xj6mrq8uf/vSnHHjggdlhhx1yww03rND+lltuyamnnpr99tsv3//+91fpsT3yyCMplUptqxK927uXOWxoaOjwj0qhUGjXtrOBfPm2yy/P2FFbWw2uWtvWoMufiw1p6GyJ/OqqtrqllpaUWjp+Huqrq7N9dV1GjBiR2tpaS6GW2ba3lkJ997YCnfW3u7/L77zzTl555ZUsfacupZbW711nk85Cu21TO2pbqGrJoPqlGT58eNsLoc4eW5IVfu87UlNT0/aCqbVtR7/3rVdbV1q5425PLS/b2XiedP85XZ22xWKx03G3tW2ptGybyO607U7dmpqatp/zQqGw1mzxunTp0rzzzjtdbK1Q3W4s7U7bUqmUlpaWbtddtkVLx/0tFot55ZVXst6zf07V2w3tluxfoW6hkKrll/7vpG3LwPos2eZ9GTFiRAYOHFjRcbd1HO9qfKyqqmpXt6u2AwcOzIABAyxB3c22PTXuJn1j7F26dGmXb0isynha6THS2LvM0qVL89xzz2XYsCWpri6mpZP5cXV1+21XOmvb2Dggr78+uOLbrlRVJ/VDitl8880zYMCATh/b8mNZV2P68mNZpee8PTH2DhgwIHV1f7vAx9jbdVtzXnPe1rq9Pe6ubXPeqqplY3Trc7uujrvmvOW3Nec1512+bl8Ye5ubm1MsFrs9nrbW7aptoVBIoVAoq25/G3uXzeFLbW3NeZfpT2NvXxh3k56Z877zzjt54YUX8nbDgLb3/t+t/RavzUknmwJWV9f89X3/pmyyySadbkPW38fdd955J/Pmzctmmy1KTU3Hbct5r6G6uioNDQOyYEFdGhbXpKWT/VVXZYvXjR5/KNVLFqWTXWZTXci73uftuG3z4CFZuONuFX+ft6mpKc8//3yeank7DaWWlDrbZvxdW7x21rauUJX3DajPiBEjMmjQIONuN9r25JwX1gVlrXjVkebm5vzyl7/Mj3/847ak7T777JOpU6d2GmrqSdtss02SZav3vFtzc3NeeOGFVFdXZ8stt+y0zogRIzJ37tw8++yzKwSvFixYkIaGhmy22WZtk+atttoq1dXVeeGFF9Lc3NwusLB8f0b89cqNVVUoFLo9AC4fWKDva53svV1VyNtVnW3RWUrbpLgqSSdtW6fYdXV1fh7WcQ0NDXnttdfS1FKVlr+++CoUOr8yefnXMh21rSq0pLq6Jeuvv36//RnrqXG3p9pCOZqamvLqK6/kra23r3jtQpZt2dzf94j3e98z+sLY27pMPX1f65WRtbUtqavr6vqizlfxbNfyr02XvXFdlUJnU/QsP3fqvG0hLUmK/Xr+1NOMvZXXF8bddfn5h77O733P6Atjrzkv9F3G3srrC+NuTzz/DQ0Neemll1JVqE1LYeXBq/bv9Xe8klZr29YWG2+88Tr9M9MaeqqrW/avY91/ryFpydKly9oXUtOt78dfe9P5ew2FYpKmDGhYnNolXa/y111Nf/0MstKfM7a+l9OYUhoLpaSmizddWp/jQjptW5VV7+/a9HsP9B2rHbz6zW9+k4suuijPP/98SqVS9tprr3zhC1/ITjvtVIn+rbIJEyZk2rRpufvuu3PCCSe0O/bAAw+koaEhY8aM6fJDwD333DMzZszI3XffnQMOOKDdsbvvvjtJMn78+LbbBg4cmF133TVz5szJnDlzMm7cuHb3ueuuu9r6BwDQF9TW1mb0zjt3uezyqqipqen3oSsAAAAAAADWTZ3HZzsxc+bMHHTQQTnjjDPy3HPPZffdd89VV12Viy++uNdDV8myYNOIESMye/bszJo1q+32pqamXHDBBUmSo48+uu32xsbGPPXUU3nxxRfb1Zk0aVLWX3/9zJgxo90eqIsWLcq0adOSJEcddVS7+7TWveCCC9otGzhr1qzce++92WabbdqFtQAAelttbW3q6+sr/k/oCgAAAAAAgP6q7BWv/vd//zff+9732vZB3nHHHXPaaadl4sSJPdG/VVZdXZ1zzz03xx57bE4++eTsv//+2WSTTTJr1qz86U9/yt57752DDjqorf3DDz+cKVOmZPz48bnyyivbbh86dGi++tWv5gtf+EI+/elP54ADDsjgwYNz6623Zv78+Zk8eXLGjh3b7twHH3xwbrnlltx22205/PDDM3HixCxYsCA33nhjBg4cmG9961srbEEIAAAAAAAAAACsPcoKXh177LGZPXt2kmTEiBE59dRTs99++/VIxyphjz32yC9+8YtceOGFmTVrVhoaGrLlllvm9NNPz7HHHptCZ5vgLmfSpEnZcMMNM23atNx4440pFovZbrvtctJJJ+UTn/jECu0LhUIuuOCCXH755Zk+fXquuOKK1NfXZ+LEiTn11FMzcuTISj9UAAAAAAAAAABgDSoreHXPPfekUChk0KBB2X777XPzzTfn5ptv7tZ9C4VCvv/9769KH1fLqFGj8sMf/rDLdhMmTMgTTzzR4fHx48eXtT3ggAEDcvzxx+f444/v9n0AAAAAAAAAAIC1Q9lbDZZKpTQ2NuZ3v/tdWffr7upSAAAAAAAAAAAAfV1Zwatzzz23p/oBAAAAAAAAAACw1igreHXYYYf1VD8AAAAAAAAAAADWGlXlNH788cfz8ssv91RfAAAAAAAAAAAA1gplBa8OPfTQ/OAHP1jpsYsuuii33XZbRToFAAAAAAAAAADQl5W11WCSlEqlld5+0UUX5bDDDsvHP/7x1e4UAAAArIqmprKuL+rS0qWVrQcAAAAAQP9RdvAKAAAA+pqamppUVRUyf/7g3u4KAAAAAADrCMErAAAA1nq1tbXZaafRKRaLFa3b2NiYefPmVbQmAAAAAAD9g+AVAAAA/UJtbW1qa2t7uxsAAAAAAKwjqnq7AwAAAAAAAAAAAGubsle8eu2113LfffeVfSxJxo0bV+7pAAAAAAAAAAAA+pyyg1d333137r777hVuLxQKHR5rPf5///d/5fcQAAAAAAAAAACgjykreLXFFlv0VD8AAAAAAAAAAADWGmUFr26//fae6gcAAAAAAAAAAMBao6q3OwAAAAAAAAAAALC2EbwCAAAAAAAAAAAok+AVAAAAAAAAAABAmWp6uwMAAAAAAAAA0Fc1NVV2PZOlS62PAtBfCF4BAAAAAAAAwLvU1NSkqqqQ+fMH93ZXum1p/ZA+XQ+gvxG8AgAAAAAAAIB3qa2tzU47jU6xWKxo3cbGxsybN6+iNVMqJKVSXh+1a2XrJilkWQgNgBUZHQEAAAAAAABgJWpra1NbW9vb3ehSqVRICoWMGDEidXV1Fa1dU1OzVjwHAL1B8AoAAAAAAAAA+oG6urrU19f3djcA1hlVvd0BAAAAAAAAAACAtY3gFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJlqersDwMrVpZBKZSOX1QIAAAAAAAAAoFIEr6CPqampSaFQyHZVgypat1AopKbGrzwAAAAAAAAAQCVIYUAfU1tbm9GjR6dYLFa0bk1NTWpraytaEwAAAAAAAABgXSV4BX1QbW2tkBQAAAAAAADQr9WlkKSqwvUA1hzBKwAAAAAAAABgjampqUmhUMh2VYMqXrtQKKSmRhQCWDOMNgAAAAAAAADAGlNbW5vRo0enWCxWvHZNTY3dhYA1RvAKAAAAAAAAAFijamtrBaSAtV7lNksFAAAAAAAAAABYRwheAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAAChTTW93oKeUSqVcd911ueaaa/L0009nwIAB2WWXXXLiiSdm3LhxZdUqFou57LLLcv311+e5555LfX19xo0bl89//vMZOXJku7YNDQ2ZOXNmZs2alUcffTQvv/xyCoVCttlmmxx44IE55phjUltbW8mHCgAAAAAAAAAArGH9dsWrb37zmznnnHOycOHCHH300Zk0aVIefPDBTJkyJbfccku365RKpUydOjXnn39+CoVCpkyZkg9/+MO58847c+SRR2bOnDnt2t9///05/fTTc9ddd2WHHXbIMccck4MOOiivvvpqvv3tb2fKlCl55513Kv1wAQAAAAAAAACANahfrnh1//3358orr8yIESNy3XXXZejQoUmST33qUznyyCPzla98JR/84AczZMiQLmv95je/ycyZMzNu3LhceumlbatVHXjggTnhhBNy9tlnZ8aMGamurk6SbLLJJvnOd76T/fbbr93KVv/6r/+aKVOm5MEHH8zVV1+dz372sz3wyAEAAAAAAAAAgDWhX6549fOf/zxJctJJJ7WFrpJkxx13zIEHHpiFCxfmpptuKqvW1KlT2wWpJk6cmPHjx+fpp5/Ovffe2+4chxxyyArbCQ4ZMiTHHXdckrRrDwAAAAAAAAAArH36ZfBq9uzZSZIPfvCDKxzba6+9knQv/PTOO+/koYceSn19ffbYY48Vjn/oQx9qd76u1NQsW2CsdXUsAAAAAAAAAABg7dTvglcNDQ159dVXU19fn0022WSF41tvvXWSZN68eV3Weu6559Lc3Jzhw4evNCxVTq0k+dWvfpXkb4EtAAAAAAAAAABg7VTT2x2otEWLFiVJuy0GlzdkyJAkyVtvvdXtWq336ahWa7vOXHXVVbnrrrsycuTI/P3f/32X7btSKpXS0NCw2nWAdUtjY+NaXb8r9fX1PVbbuAuwop4cdxNjL31Df58/sfYx5wVYs8x5AdY8c97y9eRrS69be4bvGX1JT895ob/rs8Grj33sY5k/f36320+ZMiVnn312D/Zo1d1666351re+lY033jgXXnhhBgwYsNo1ly5dmscee6wCvQOonO6uANhTxowZ02O1jbsAK+rJcTcx9rJu6O35E2sfc16ANcucF2DNM+ftW7xuXfv4nlGunp7zQn/XZ4NXW265ZWpra7vdfuONN07yt5WuOlqFavHixUmS9dZbr8uarbVa79NRrY5W10qSmTNn5otf/GI23HDDXH755W3bE66uAQMGZPvtt69ILWDd0djY2KMT7hEjRqSurq7H6vcm4y7AmmfspS8wf2JdYtwFWPOMvQBrVn8dd3vytavXrT3D9wyg/+izwavLL798le5XX1+fTTfdNK+++moWLFiQTTbZpN3xZ599NsmyPzhd2WqrrVJdXZ0XXnghzc3Nqa6uLqvWTTfdlH/5l3/JxhtvnMsvv7xb5+yuQqFgyT+gz6mrq+u3Y5NxF2DNM/ayLujP8yfWPsZdgDXP2AuwZhl3y+d169rH9wxgzarq7Q70hAkTJiRJfv/7369w7O67706SjB8/vss6AwcOzK677pqGhobMmTNnheN33XVXu/Mt7ze/+U3++Z//OZtuummuuuqqioauAAAAAAAAAACA3tUvg1dHH310kuTHP/5xuy0HH3vsscyYMSPrr79+Jk2a1O4+r776ap566qkVtihsrXXBBRekqamp7fZZs2bl3nvvzTbbbLNCiOv666/PGWeckc033zxXXXVVttxyy4o+PgAAAAAAAAAAoHf12a0GV8fYsWMzefLkXHnllTnkkEOy7777ZsmSJfntb3+bYrGYr33taxk6dGi7+3z3u9/N9ddfn3PPPTeHH3542+0HH3xwbrnlltx22205/PDDM3HixCxYsCA33nhjBg4cmG9961vttiC85557ctZZZ6WlpSUTJkzI9OnTV+jf0KFDc+yxx/bY4wcAAAAAAAAAAHpWvwxeJcnZZ5+dkSNH5mc/+1muueaa1NTUZLfddstJJ52UcePGdbtOoVDIBRdckMsvvzzTp0/PFVdckfr6+kycODGnnnpqRo4c2a79iy++mJaWliTJr371q5XWHDZsmOAVAAAAAAAAAACsxfpt8KpQKOSII47IEUcc0a325513Xs4777yVHhswYECOP/74HH/88V3WOfzww9utmAUAAAAAAAAAAPQ/Vb3dAQAAAAAAAAAAgLWN4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlKmmtzsAwJpXqGqpaPK2UNVSwWoAAAAAAAAA0PcJXgGsQ2pqalIoFDKovqnitQuFQmpq/FkBAAAAAAAAYN3gE3KAdUhtbW1Gjx6dYrFY8do1NTWpra2teF0AAAAAAAAA6IsErwDWMbW1tQJSAAAAAAAAALCaqnq7AwAAAAAAAAAAAGsbwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZarp7Q4AAAAAAAAAsHoKVS0VW3WjUNVSoUoA0L8JXgEAAAAAAACspWpqalIoFDKovqmidQuFQmpqfJwMAJ3xlxIAAAAAAABgLVVbW5vRo0enWCxWtG5NTU1qa2srWhMA+hvBKwAAAAAAAIC1WG1trZAUAPSCSm3zCwAAAAAAAAAAsM4QvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQJsErAAAAAAAAAACAMgleAQAAAAAAAAAAlEnwCgAAAAAAAAAAoEyCVwAAAAAAAAAAAGUSvAIAAAAAAAAAACiT4BUAAAAAAAAAAECZBK8AAAAAAAAAAADKJHgFAAAAAAAAAABQppre7gAAAAD0dYWqlopeuVSoaqlgNQAAAAAAeoPgFQAAAHSgpqYmhUIhg+qbKl67UCikpsbLcgAAAACAtZV3eAEAAKADtbW1GT16dIrFYsVr19TUpLa2tuJ1AQAAAABYMwSvAAAAoBO1tbUCUgAAAAAArKCqtzsAAAAAAAAAAACwthG8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTIJXAAAAAAAAAAAAZRK8AgAAAAAAAAAAKJPgFQAAAAAAAAAAQJkErwAAAAAAAAAAAMokeAUAAAAAAAAAAFAmwSsAAAAAAAAAAIAyCV4BAAAAAAAAAACUSfAKAAAAAAAAAACgTP02eFUqlfLLX/4yhx9+eHbbbbeMGzcun/vc53LfffeVXatYLObiiy/OAQcckJ133jkTJkzIKaeckieeeKJb97/vvvuy4447ZuTIkfne975X9vkBAAAAAAAAAIC+pd8Gr775zW/mnHPOycKFC3P00Udn0qRJefDBBzNlypTccsst3a5TKpUyderUnH/++SkUCpkyZUo+/OEP584778yRRx6ZOXPmdHr/xYsX54wzzsigQYNW9yEBAAAAAAAAAAB9RE1vd6An3H///bnyyiszYsSIXHfddRk6dGiS5FOf+lSOPPLIfOUrX8kHP/jBDBkypMtav/nNbzJz5syMGzcul156aWpra5MkBx54YE444YScffbZmTFjRqqrq1d6/29+85tZvHhx/vEf/9FqVwAAAAAAAAAA0E/0yxWvfv7znydJTjrppLbQVZLsuOOOOfDAA7Nw4cLcdNNNZdWaOnVqW+gqSSZOnJjx48fn6aefzr333rvS+86cOTPTp0/P2WefnU033XRVHw4AAAAAAAAAANDH9Mvg1ezZs5MkH/zgB1c4ttdeeyVJh2Gp5b3zzjt56KGHUl9fnz322GOF4x/60IfanW95r7/+er785S9n7733ziGHHFJW/wEAAAAAAAAAgL6t3wWvGhoa8uqrr6a+vj6bbLLJCse33nrrJMm8efO6rPXcc8+lubk5w4cPX+lWgp3VOuecc9LS0pKvfvWr5T0AAAAAAAAAAACgz6vp7Q5U2qJFi5Kk3RaDyxsyZEiS5K233up2rdb7dFSrtV2r6667Lrfffnu+973vZeONN+5ex8tUKpXS0NDQI7UB1lb19fU9Vtu4C7Cinhx3E2MvwMqY8wKsWea8AGueOS/rgsbGxrWyNv1TT895ob/rs8Grj33sY5k/f36320+ZMiVnn312D/aoe1544YV861vfyqRJk7L//vv32HmWLl2axx57rMfqA6yNxowZ02O1jbsAK+rJcTcx9gKsjDkvwJplzguw5pnzwurpzs5PsLyenvNCf9dng1dbbrllamtru92+dWWp1pWu3r0KVavFixcnSdZbb70ua7bWar1PR7WWX13rrLPOyqBBg/Jv//Zv3ez5qhkwYEC23377Hj0HAH9j3AVY84y9AGuWcRdgzTP2AqxZxl36isbGxh4LSI0YMSJ1dXU9UhuAFfXZ4NXll1++Sverr6/PpptumldffTULFizIJpts0u74s88+m2TZH5yubLXVVqmurs4LL7yQ5ubmVFdXd1nr//7v/7Jo0aK8//3vX2nNadOmZdq0aTnssMNy3nnnlfHI2isUCpb8A1iDjLsAa56xF2DNMu4CrHnGXoA1y7jLuqCurs7POcAa1GeDV6tjwoQJueGGG/L73/8+hx56aLtjd999d5Jk/PjxXdYZOHBgdt1118yZMydz5szJuHHj2h2/66672s7X6tBDD13pvrnPPvts7rvvvuy4447Zaaedsscee5T7sAAAAAAAAAAAgD6iXwavjj766Nxwww358Y9/nI9//ONtWwE+9thjmTFjRtZff/1MmjSp3X1effXVLFq0KJtuumm7rQOPPvrozJkzJxdccEEuvfTStu0PZ82alXvvvTfbbLNNuxDXOeecs9I+TZ8+Pffdd18mTpyYL3zhC5V+yAAAAAAAAAAAwBrUL4NXY8eOzeTJk3PllVfmkEMOyb777pslS5bkt7/9bYrFYr72ta+1C1clyXe/+91cf/31Offcc3P44Ye33X7wwQfnlltuyW233ZbDDz88EydOzIIFC3LjjTdm4MCB+da3vrXCFoQAAAAAAAAAAED/1i+DV0ly9tlnZ+TIkfnZz36Wa665JjU1Ndltt91y0kknrbBlYGcKhUIuuOCCXH755Zk+fXquuOKK1NfXZ+LEiTn11FMzcuTIHnwUAAAAAAAAAABAX1QolUql3u4E5XnkkUeSJDvvvHMv9wRg3WDcBVjzjL0Aa5Zx9/9n787j4yrr/YF/JpkMbdqyCWVpC8WCBQk7LUhZFFBAFqGA4lIsyEVxARe8KHC5Xu9V+F2uCxcQ9LLIJvui7IpKZVGKFJCyFMQWaNn3lqQkaeb3R20kNmkzZdIsfb9fL18y5zzzPc+ZTJ6eOfPJ8wAsf8ZegOXLuEtf0tjYmEcffTRN8walra2mKjVratoyeOj8bLLJJqmvr69KTQCWrjqjOAAAAAAAAAAAwApE8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoVe7sDAAAAAAAAALCiKdS0VW2mlEJNW5UqAVAJwSsAAAAAAAAAWE6KxWIKhUIG1TdXtW6hUEixKAIAsDwZdQEAAAAAAABgOSmVSmloaEhra2tV6xaLxZRKparWBGDJBK8AAAAAAAAAYDkqlUpCUgADQLWWjAUAAAAAAAAAAFhhCF4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACpU7O0OULmWlpaUy+U89NBDvd0VgD6lVCpl7NixVa9r3AXoXE+Nu4mxF6ArrnkBli/XvADLn2tegOWrJ695YUUgeNUPFQqF3u4CwArFuAuw/Bl7AZYv4y7A8mfsBVi+jLsAQE8olMvlcm93AgAAAAAAAAAAoD+p6e0OAAAAAAAAAAAA9DeCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHjVD82YMSMzZszo7W4ArDCMuwDLn7EXYPky7gIsf8ZegOXLuAsA9IRib3eAyjU3N/d2FwBWKMZdgOXP2AuwfBl3AZY/Yy/A8mXcBQB6ghmvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKlTs7Q4AAL2rubk5ra2tVa1ZLBZTKpWqWhMAAAAAAACgLxG8AoAVWHNzc6ZPn55yuVzVuoVCIQ0NDcJXAAAAAAAAwIAleAUAK7DW1taUy+XMbyyl3FadFYgLNW0ZVL9wFi3BKwAAAAAAAGCgErwCAFJuq0lblYJX1akCAAAAAAAA0Lf5bhQAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhYq93QEAAAAAAAAAWJE0NzentbW1qjWLxWJKpVJVawKwZIJXAAAAAAAAALCcNDc3Z/r06SmXy1WtWygU0tDQIHwFsBwJXgEAAAAAAADActLa2ppyuZz5jaWU22qqUrNQ05ZB9Qtn0RK8Alh+BK8AAAAAAAAAYDkrt9WkrUrBq+pUAaBSxl8AAAAAAAAAAIAKmfEKAKCfaW5eOF10NRWLRdNPAwAAAAAAQAUErwAA+pHm5uZMnz495XK5qnULhUIaGhqErwAAAAAAAKCbBK8AAPqR1tbWlMvlzG8spdxWnVWjCzVtGVS/cBYtwSugP+uJGQETswICAAAAANA5wSsAgH6o3FaTtioFr6pTBaB3NTc35+GHp6etrbozAiZJTU0hm25qVkAAAAAAADoSvAIAAKDfa21tTVtbOSNGvJVSqa1qdZubazJnzhCzAgIAAAAAsBjBKwAAAAaMUqktgwcv6O1uAAAAAACwArCyDAAAAAAAAAAAQIUErwAAAAAAAAAAACo04JcafOyxx3LGGWfk3nvvTVNTU0aNGpUDDjggkydPTrHY/dO/9957c/bZZ+cvf/lLWlpa8t73vjef/OQnc/DBBy/W9pprrsm3v/3tLmv93//9X3beeedlOh8AAAAAAAAAAKD3Dejg1bRp03LYYYdlwYIF2WuvvTJ8+PBMmTIlp556au6///6cccYZKRQKS61z66235qtf/WoGDx6cvffeO0OGDMmvf/3rnHjiiXn88cdzwgkndPq83XbbLZtsssli29dff/13fW4AAAAAAAAAAEDvGbDBqwULFuT444/P/Pnz87Of/Sy77LJLkuSYY47JYYcdlttuuy3XX3999ttvvyXWmTt3bk466aQUi8Vccskl7UGqL33pSznooINy4YUXZs8998w222yz2HN33333TJw4sfonBwAAAAAAAAAA9Kqa3u5AT7nnnnsyc+bMbLfddu2hqyQplUo55phjkiSXXXbZUuvccsstef3117PPPvt0mL1q2LBh+cIXvtDtOgAAAAAAAAAAwMAxYGe8uueee5IkO+6442L7ttlmm9TX1+eBBx5Ic3NzSqVSl3X+9Kc/dVln0bapU6d2+txHH300P//5z9Pc3Jx11lkn22+/fdZcc82KzwUAAAAAAAAAAOhbBmzwaubMmUmS9ddff7F9tbW1GTlyZB5//PE888wzGTNmTJd1Zs2a1WWdNddcM/X19Xn++efT1NSUwYMHd9h/4YUXdnhcV1eXQw89NN/4xjdSW1tb6Sl1UC6X09jY+K5qAAw09fX1PVZ7oI67TU1N/bL2iszPjL6kJ8fdZOCOvfSMnh7DjJH0Fa55AZYv17wAy59rXlYE7vPSl/T0NS8MdAM2eDVv3rwkC5cE7MyQIUOSJG+++ea7qjN06NA0NjZm7ty57cGrUaNG5aSTTsqECROy9tpr5/XXX88f//jH/PCHP8y5556bcrmc4447bpnOa5GWlpY8+uij76oGwECzzTbb9Fht427lFoWX6T/8zKhUT467ibGXvsUYSV/hmhdg+XLNC7D8ueaFd8c9DCrV09e8MNAN2OBVbxo3blzGjRvX/njttdfOAQcckE022SQHHXRQLrzwwhxxxBF5z3ves8zHqKury4YbbliN7gLQDQN13G1qauqxD2GjR49ebDZI3j0/M1YkA3XspWf05PiYGCNZMRh3AZY/Yy/A8mXcpa9wnxdg4BiwwauhQ4cmSebOndvp/rfeeitJsvLKK7+rOkubEeudNt5442y++ea577778uCDD2bXXXdd6nO6UigUTPkHsBwZdys3ePBgr1k/42dGX2PspS8xRrIiMO4CLH/GXoDly7jLisA9DIDlq6a3O9BTNthggyTJU089tdi+BQsWZPbs2amtrc2oUaOWWGf06NFd1nnppZfS2NiYtddeu9up4dVWWy2JtXUBAAAAAAAAAKA/G7DBq+222y5Jcueddy6277777ktjY2O23HLLlEqlJdbZfvvtu6yzaNv48eO71afW1tY88sgjSZKRI0d26zkAAAAAAAAAAEDfM6CDV6NHj84999yTKVOmtG9vbm7OaaedliQ55JBD2rc3NTXlySefzLPPPtuhzp577plVV101N9xwQx599NH27XPnzs3ZZ5+dJPnEJz7R4TnTp09frD8tLS055ZRT8uyzz2b06NFpaGh49ycJAAAAAAAAAAD0imJvd6Cn1NbW5uSTT87kyZPzpS99KR/96Eez5pprZsqUKXniiSey++67Z999921v/5e//CWHHnpoxo8fn4suuqh9+7Bhw/If//Ef+drXvpZPf/rT2XvvvTNkyJD8+te/zpw5czJp0qRsu+22HY594IEHZuzYsRk7dmyGDx+eN954I1OnTs1TTz2VVVZZJf/zP/+T2tra5fZaAAAA8O70xHLxxWJxqbMwAwAAAADQdw3Y4FWSbL311rniiity+umnZ8qUKWlsbMyoUaPyzW9+M5MnT06hUOhWnT333DOrr756zj777Nx0001pbW3NmDFjctRRR+Wggw5arP3hhx+eBx98MH/84x/z+uuvp1gsZuTIkTn88MMzefLkrLXWWtU+VQAAAHpAa2sh5XIya9asqtcuFAppaGgQvgIAAAAA6KcGdPAqSTbeeOOceeaZS2233XbbZcaMGV3uHz9+fMaPH9+tYx533HHd7h8AAAB914IFhRQKyfzGUsptNVWrW6hpy6D65rS2tgpeAQAAAAD0UwM+eAUAAADvVrmtJm1VDF5VrxIAAAAAAL3FvV4AAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFSr2dgcAAAAAAAAAWHbNzc1pbW2tas1isZhSqVTVmvS8pqamqtf0XgDomuAVAAAAAAAAQD/V3Nyc6dOnp1wuV7VuoVBIQ0ODwE0/USiUk3I5s2bNqn7tJA2bbea9ANAJwSsAAAAAAACAfqq1tTXlcjnzG0spt9VUpWahpi2D6hfOoiVs008UykmhkPc89mDqGudVrWxL/dC8svEW3gsAXRC8AgAAAAAAAOjnym01aatS8Ko6VegNdY3zUpr3Zm93A2CF4d9MAAAAAAAAAACACgleAQAAAAAAAAAAVEjwCgAAAAAAAAAAoEKCVwAAAAAAAAAAABUSvAIAAAAAAAAAAKiQ4BUAAAAAAAAAAECFBK8AAAAAAAAAAAAqJHgFAAAAAAAAAABQIcErAAAAAAAAAACACgleAQAAAAAAAAAAVKjY2x0AAAAAAAAAAFYszc3NaW1trXrdYrGYUqlU9boAnRG8AgAAAAAAAACWm+bm5kyfPj3lcrnqtQuFQhoaGoSvgOVC8AoAAAAAAAAAWG5aW1tTLpfzZNv8NKV64avBKWRMzaC0trYKXgHLheAVAAAAAAAAALDcNaWcxrRVsWJNFWsBLJ1RBwAAAAAAAAAAoEJmvAJYwTQ3N6e1tbXqdYvFoilbAQAAAAAAAFhhCF4BrECam5szffr0lMvVWyt7kUKhkIaGBuErAAAAAAAAAFYIglcAK5DW1taUy+XMbyyl3Fa91WYLNW0ZVL9wJi3BKwAAAAAAAABWBIJXACugcltN2qoYvKpeJQAAAAAAAADoH3xXDgAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhYq93QEAAABYUTU1NVW9ZrFYTKlUqnpdAAAAAAA6ErwCAACA5axQKCflcmbNmlX92kkaNttM+AoAAAAAoIcJXgEAAMDyVignhULe89iDqWucV7WyLfVD88rGW6S1tVXwCgAAAACghwleAQAAQC+pa5yX0rw3e7sbAAAAAAAsg5re7gAAAAAAAAAAAEB/I3gFAAAAAAAAAABQIUsNQh/U3Nyc1tbWqtYsFosplUpVrQkAAAAAAAAAsKISvII+prm5OdOnT0+5XK5q3UKhkIaGBuErAAAAAAAAAIAqELyCPqa1tTXlcjlPts1PU6oTvhqcQsbUDEpra6vgFQAAAAAAAABAFQheQR/VlHIa01alajVVqgMAAAAAAAAAQCKNAQAAAAAAAAAAUDHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKlTs7Q4AAAAAAAAA0Pc0NTVVvWaxWEypVKp6XQDoDYJXAAAAAAAAALQrFMpJuZxZs2ZVv3aShs02E74CYEAQvAIAAAAAAADgHwrlpFDIex57MHWN86pWtqV+aF7ZeIu0trYKXgEwIAheAQAAAAAAALCYusZ5Kc17s7e7AQB9Vk1vdwAAAAAAAAAAAKC/EbwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKlTs7Q4AAAAAfV9zc3NaW1urWrNYLKZUKlW1JgAAAADA8iJ4BQAAACxRc3Nzpk+fnnK5XNW6hUIhDQ0NwlcAAAAAQL8keAUAALAc9cSsQYmZg+hZra2tKZfLebJtfppSnfDV4BQypmZQWltbvXcBAAAAgH5J8AoAAGA56alZgxIzB7F8NKWcxrRVqVpNleoAAAAAAPQOwSsAAIDlZNGsQfMbSym3VS90Uqhpy6D6ZjMHAQAAAADAciR4BQAAsJyV22rSVsXglXmDAAAAAABg+RO8AgAA6ERz88IZpKqpqampqvUAAAAAAIDeI3gFAADwT5qbm/Pww9PT1lbu7a4AAAAAAAB91IAPXj322GM544wzcu+996apqSmjRo3KAQcckMmTJ6dY7P7p33vvvTn77LPzl7/8JS0tLXnve9+bT37ykzn44IM7bd/a2pqf//znufbaa/P000+nvr4+48aNy1e+8pWMHTu2WqcHAAD0gNbW1rS1lTNixFspldqqVnfevGJeemlw1eoBAAAAAAC9Z0AHr6ZNm5bDDjssCxYsyF577ZXhw4dnypQpOfXUU3P//ffnjDPOSKFQWGqdW2+9NV/96lczePDg7L333hkyZEh+/etf58QTT8zjjz+eE044oUP7crmcY445Jrfddls22mijHHrooXnxxRdz880354477sj555+frbfeuqdOGwAAqJJSqS2DBy+oWr23366pWi0AAAAAAKB3Ddjg1YIFC3L88cdn/vz5+dnPfpZddtklSXLMMcfksMMOy2233Zbrr78+++233xLrzJ07NyeddFKKxWIuueSSbLLJJkmSL33pSznooINy4YUXZs8998w222zT/pxf/epXue222zJu3Licd955KZVKSZJ99tknRx55ZE444YTccMMNqa2t7aGzBwAAAAAAAAAAetKA/XPre+65JzNnzsx2223XHrpKklKplGOOOSZJctllly21zi233JLXX389++yzT3voKkmGDRuWL3zhC53WWfT4mGOOaQ9dJckuu+yS8ePH529/+1umTp267CcHAAAAAABQJc3NzWlsbKz6/5qbm3v71AAAoEcN2Bmv7rnnniTJjjvuuNi+bbbZJvX19XnggQfS3NzcIRz1z/70pz91WWfRtneGqN5+++08+OCDqa+v73Q5wZ122ilTp07NPffckw984AOVnRQAAAAAAEAVNTc3Z/r06SmXy1WvXSgU0tDQsMTvYQAAoD8bsMGrmTNnJknWX3/9xfbV1tZm5MiRefzxx/PMM89kzJgxXdaZNWtWl3XWXHPN1NfX5/nnn09TU1MGDx6cp59+OgsWLMjIkSM7XUpwUZ1FdZdVuVzu8i9FampqUiz+40e7pL8oKRQKqaurW6a2LS0tXX4Q66m2STp8QKukbWtra9ra2qrStq6uLoVCoUfaLlJua0u5bUGXbVNb01633NaWtHX9OpRrC+3/vWDBgixY0HXdYrGYmpqaHm3b1taW1tbWLtvW1ta2//70hbblcjktLS1VafvO38+eapt0/bvc3Ny82M9pwYKuX4ckqa39R92u2pbLbYvV7Y0xoidv4AzkcXfh729r2to6nwizO++Bztq2trYu8fz6yri7qO3SxrFK2vbkWLpIW1tbFizo+twKNTWpKfx93C23Lfy3ohuMu9Uddytt2xfHiN4ad5O+MvYuSG1t57+XhUJSV1fboW1Xl6b/3HbBggVLHJ+MvZW3fecxFyxoy4IFXV8fF4s1qakpdKttW1vtO/67LeVydcbeQs0/9rWVy1nClX9qktT+/XVYWtsF73gTVnPsfedrXy6XkyX8G5RCIYXamqW2bUs5C2o71jX2Lr2ta173Gt5N2/5yzeteg2vertoOtHE3MfYuS1tjb/XH0+bm5pTL5cxvLGVBa5Z8zVuo6TD2LqltTW1SP7Q1ra2tKRaLxt4K2ybG3p4wkMfdHrvPWy6nsIQxuq5Q6NB2SRHOd34xvbR7GAN53O2p+7zuNfy9ViHt634Zd3t/3IUVwYANXs2bNy/JwiUBOzNkyJAkyZtvvvmu6gwdOjSNjY2ZO3duBg8enLlz57Zv76p9kvZ2y+r111/PySef3Om+9773vTnwwAPbH//oRz/q8h/AddddNxMnTmx/fM4552T+/Pmdth0+fHg+/vGPJ1l4QXDeeed1+fq95z3vyeGHH97++Lzzzssrr7zSaduVV145n//859sfX3TRRXn++ec7bTt48OB8+ctfbn982WWX5Zlnnum0bV1dXb761a+2P7766qvzt7/9rdO2SfLNb36z/b9/+ctf5vHHH++y7TuXkbzpppvy8MMPd9n2S1/6Uurr65Mkv/nNb/LAAw902fbII49srzt3xt/y6synumy77k7bpTRs4fvptb/Oyht/ndll29E7jEtWr09TU1OmTp2aKVOmdNn2E5/4RNZbb70kybRp0/Lb3/62y7YTJ05sDy5Onz49N998c5dt99tvv4wdOzZJMmPGjPzqV7/qsu1ee+2VhoaGJMmTTz6Za665psu2u+22W/vsck8//XQuv/zyLtsuWu4zSZ577rlcfPHFXbbdYYcdMmHChCTJyy+/nPPPP7/LtuPGjcsHP/jBJMkbb7yRn/3sZ1223XLLLfPhD384SdLY2Jgzzzyzy7abbLJJdttttyQLL4Z++tOfdtl2zJgx2Wuvvdofn3HGGV22HT58eDZv2LF9rdkpd/4ybV2E/FZdZY1ss9UH2x/f+ccb0tLS+cXhKquskpEjR6apqSlJcsEFF3Q51q2++ur51Kc+1f74F7/4RV599dVO275zaddkyWPEv//7v3e6vRoqGXd//OMfd3khP2rUqBxyyCHtj88444z21+yfrb322pk0aVL747PPPrtqr+lnP/vZJAtnarz77rvzxhtvdNq2rq6UnSfs1/74/gf/kNffeLnTtjU1tfnQzge0f7i76qqruhyjk3QYz2+++eY8+eSTXbb9/Oc/n7q6uhSLxfzmN7+p6ri7yiqrJEluv/323HvvvV22Peyww7LGGmskSe66667cfffdXbb9zGc+k3XWWSctLS2ZOnXqEtvuv//+GTlyZJLkL3/5S/7whz902XafffbJOuuskyR54aWn8sij93XZtuH922et4QvrvvTi7Ex/5E9dtn3/JtvkvSuvk9dffz3PPfdcbrjhhi7b7rzzztl8882TJLNnz851113XZdsddtgh48ePT11dXdXH3QkTJqS1tTVvvvlmLrzwwi7bbrbZZu3LTjc1NeXcc8/tsu3GG2+cPffcM3V1dWlubs5pp53WZdv3ve99+djHPtb++NRTT+2y7fIaI376058u92uznhx3k94dexftv/jiP2fevM6vj1dfvT6f/vS49seXXDItr77a2GnbYcNWyuTJ26elZeG/wNMe+H3enPt6p22Nvf9Qydh78MEHJ0mam2sybdrzueuurq/9Dzhgi4wcuWqS5C9/eT5Tpvy1y7a7775FBg0alkJNW1586ek8OuPPXbatZOzddJOtssHQEWmpH5qn57fk16/O67LtDqsMzvuHDEqSPPt2S256peu225TKWScLx7xqjr1bbbVVRowYkcEppKWpOXNu7/pnMWy9EXlPw8ZJkgXNzXnmt3d02bZt5Mj2zxTG3t4fewfqNW+SXHHFFXnxxRc7bTto0KAcccQR7Y+vueaaPPvss522LRaL7Z9PyuVybrjhhjz1VNef3QfyuNuT17yjR49OuVzOY489tsT7EnvuuWc23HDDJMlf//rX3HLLLV223W233bLxxhunUChk1qxZrnld8/aJcTfp/bG3paUl5557btXH3nK5nCuvvNLYm+qPvWussUZaW1szbdq0qo29e+yxR/sXs8+/UME178vPLv1+w9D+c79hm222aV+ppJpj7yabbJJ99tkniWvevjD29va4m/Sj+7yFhfcafvPG/Mxp7DrkcsS6q7X/929fnZeZ87sOuXx27VWT+oXfbd1888157LHHumzbV8bd/nSf172GhVYZsU6y1TZpamoy7vaBcRdWBAM2eLUimzdvXh599NH2x0v6S6H58+d3mH1rSWnxt99+u73t0tLBb7/9doc+vP322122bWlp6dC2q390koXJ53e2feutt7ps29bW1qHtohBdV97ZdmnBuBkzZrQnmru6iF3k8ccfz0orrZQkee2115bY9q9//Wvq6+tTLpezaqE2nV9KL7RRzaAMqxm8sD+FYpbUi5E1K6VcLmfWrFld3uxY5Kmnnmp/XV944YUltn3mmWfaE9pd3RhZZPbs2e3vr6W1ffbZZ9vT8EvrwwsvvND+s3v55c4/JCzy4osvtrd9/fXXl9j2pZdeam+7tPfDK6+80t62sbHzL1sXee2119rbLun3YtFxF/3OLemvBxYdt7sz6ZXLyaD6f4Sn3vHHKIupqW3L4KHzu9U2WRhoW2RJfW5ubu7Q3yUl/VtbW7s9RvSWfx53lzSWvvXWWx3aLumvXpqamjq0reZr2t33S6GQDu+Bmtol/cXjO9qWy0t9j7+zD0v73XnqqacWjrvlco+Mu0m6/HCyyN/+9re89NJLSdL+/12ZNWvW38eZ8lL78Pzzz7f/bLu6ibLIojGxXE7qSkseF0qDmtt/HqU3u34/JH+vVS7nueeeW+q4++qrr7b/7JY27r722mv56xNPJIVC1cfdJ554IoVCYanvnTfffLO9v0t7T86bN6+97tLG3blz53b4/Vxa3eUxRvTGtVlvWj6vazkLFnT9j19zc01mzhzW4XFXWlv/0bZcTgo1XV+jG3v/oZKx97nnnsuqq66SOXOG5NVXV1pK28FpaRn29z4MWmLbN94oZaWVFl4/lQZ1/XuWVDb2FkttSbmcVzbeIq+98ELyatc3hd8cNSbPjx6dJHn15ZeTV7q+ydo4fN3k79f+1Rx733jjjay77roZUzMojTVtmbOEtqsXimn4+2eVt2tq0nUUcKHuXvMae3tXf7/mXdLr39bW1qFtV3+QlqT9s/XfHyz1ZzWQx93lcc3bnc/5i+7PLO1+x8svv5ynZs1KCgXXvK55+8W4myy/a96eGHvLZWNvz429ryUpVHXsffXVVzN8+FpVv+btb/cbXnvttfY+VHPsfed4auzt22Nvf7/mXZJ3c6+hZejKSWPX4/TzW09o/+/5992XvON7gn/2wpbbt4+7S/veru+Mu6+nv9znda9hoWGF2vbrB+Nu3x53YaAolHti0e4+4Oijj86tt96a//3f/80ee+yx2P599903jz/+eG666aYlLjV44IEHZvr06bn66qvbZ+B5p6222iqNjY154IEHMnjw4DzxxBPZZ5998r73vS/XX3/9Yu1vvfXWHH300dlrr73y4x//eJnO7aGHHkq5XG6fleifvXOaw6ampvz1r3/NzLa309TZ5J6FpOYdSyK2tS5hIsm/tx2cQsbUDMqIESMyaFDnX1KYgvrdtW1pacnbb7+9xLbFYrHDVKhLXqqmNqVSKXV1dab/7ydTUM+fPz9PP/101ltvfkqltpTL5bS2LumDUCHF4j++7G1p6fxn0dxck+eeG5KRI0e2f2BZUn8X1v1HRrertm+//XZeeOGFDH9ieuoaF35Yam3rekrhQpJizTumH+6ibUv9kLw2dvOMGTMmgwcPbu9DV7/3q666apfn8m5UMu4mPTO9bFNTU5588smss85bKZU6fy/883JXS7KobXNzTZ5+elDWWmut9vfE4m3/0d/W1tYljrt1dXV5++23F375/cgDqW3s+sNz3TvfA+Vyl8tzJUmxkLQOGZZXNt4io0aNWuK0t31lCupFgeW1156bYrHrtrW1HZe7alvC0rG1tTVpba3NnDlDstZaa3V43y3etrbDuLuk/ra2tuaFF17Iex57MLVvzc0SVtxKbSGpeecU1Etou2DI0Ly+yZYZPXp0VlpppaqNu83NzXnmmWfyZNv8NJbbUl7SVNz/NAX1ktoOLtRko7r6jB49OoMGDTIFdTfa9tS4m/SNsbelpWWpNyT++bXqTttyuZwFCxYsdTxdxNjb/bF3wYIFaW1t7db18TuvY5fWtlAopFAoVFR3aWNvTc3CJVoKhUK32r7zOnZpbVdaaaXU1dVV/Zp3Ub2F16Zd131nf5fWtq6urv06z/T/vTv29oVxt6eueefNK+b550uZ31iXcreWXVmQLGGBlNraYmpqW7PS4NYVftztqWvexsa6vPTS4DTOK6aLCZqTVLbcVW2xLYOHtLnmdc1bcduBfM3b1NSUWbNmZfjwN7scd5PKx95584p56aXBeWtubcptXf8hg7G38rYtLS15+umnM2LEW6mtbV3qeNrdsXfBgto899ywrLPOOikWi1W75u1P9xvmz5+fZ555JjPTnKaUlzqednfsHZxC3ls7qP3+pmte17z96T5vUv17GIu+21r0//1hidf+dJ/XvYbF+2vc7f1rXlgRDNgZrzbYYIMk6XTK4QULFmT27Nmpra3NqFGjllhn9OjRmT59ep566qnFglcvvfRSGhsbs/baa7ffKF5vvfVSW1ub2bNnZ8GCBe3/ACyyqD+j/54gXlaFQqHbA2CxWMzbbS2Zn64uSN6xvbiU6WzSlkWL4q688srt6XGguhobG/8emGvL4MFL/mC1UDl5xwrcfx+SFtPUVEhtbW1WXXXVqv7+NjY25uWXX05d47yU5i2c/rSS1aC7attcU8ibtbUZPHhwr483lYy7lfS1kra1tbUZMqTQ5c+3O++BztrW1tZmzTXXrNpr3NjYmOeeey6D5r+VUmP3ltbtzvtl0YfhoUOH9vr7oTsWfRgePHhpP48lrFvfSdumpoWvw+qrr17Vn9kLL7yw8Hf4rXe3HPI7Nf/9RkO1f4cX/dVpU8ppKpS7ef2Sv6c+u25bk2Xvb0/93veH93pP6gtj76Jp6vs6Yy8rImNv9fWFcbcnrnnffnvhDfqaQilthc6DV+/8DqfQRZt3ti38/VpvRR93e+qat6VlYftCit36efy9N0ucpblQaE3S7JrXNW+f0xfG3iWPu0mlY+/bby/8va0p1HU57ibG3mWxaGxYeM9waX9T3/2xd9Hfm/TEPcP+cr+hsbExNTU1aWorpzFtSx1PF1r62FuTmtTWLPv9TWNv9fWFcbe/3Odlof50n5d3z7gLLIslf5rpx7bbbrskyZ133rnYvvvuuy+NjY3Zcsstl/gXLEmy/fbbd1ln0bbx48e3b1tppZWyxRZbpLGxMdOmTVvsOXfccUeH/gEAAAAAAAAAAP3PgA5ejR49Ovfcc0+mTJnSvr25uTmnnXZakuSQQw5p375oas9nn322Q50999wzq666am644YYOa6DOnTs3Z599dpLkE5/4RIfnLKp72mmndZg2cMqUKZk6dWo22GCDDmEtAAAAAAAAAACgfxmwSw3W1tbm5JNPzuTJk/OlL30pH/3oR7PmmmtmypQpeeKJJ7L77rtn3333bW//l7/8JYceemjGjx+fiy66qH37sGHD8h//8R/52te+lk9/+tPZe++9M2TIkPz617/OnDlzMmnSpGy77bYdjr3ffvvl1ltvzW9/+9tMnDgxu+yyS1566aXcdNNNWWmllfL9739/sSUIAQAAAAAAAACA/mPABq+SZOutt84VV1yR008/PVOmTEljY2NGjRqVb37zm5k8eXL72u1Ls+eee2b11VfP2WefnZtuuimtra0ZM2ZMjjrqqBx00EGLtS8UCjnttNNywQUX5JprrsmFF16Y+vr67LLLLjn66KMzduzYap8qAAAAAAAAAACwHA3o4FWSbLzxxjnzzDOX2m677bbLjBkzutw/fvz4ipYHrKuryxFHHJEjjjii288BAAAAAAAAAAD6h5re7gAAAAAAAAAAAEB/M+BnvAIAAAAAAACAZdXcXN35TKpdD4DeI3gFQNW01A/t0/UAAAAAAAC6q1gspqamkDlzhlS9dk1NIcWir+sB+jsjOQDvWrFYTCHJKxtvUfXahb/XBwAAAAAAWJ5KpVI23bQhra2tVa9dLBZTKpWqXheA5cs32QC8a6VSKQ2bbeaDBwAAAAAAMKCUSiXfUwDQJcErAKrCBw8AAAAAAAAAViQ1vd0BAAAAAAAAAACA/kbwCgAAAAAAAAAAoEKCVwAAAAAAAAAArPDGjh2bsWPH9nY36EcErwAAAAAAAAAAACpU7O0OAAAAAAAAAABAb7vpppt6uwv0M4JXAAAAA0RL/dA+XQ8AAAAAoC8bM2ZMb3eBfkbwCgAAoJ8rFospJHll4y2qXrvw9/oAAAAAAAPd2LFjkyQzZszocvt1112XCy+8ME8++WRWWmmlbL/99jn22GOz3nrrLVZv6tSpOf/88zNjxoy8+OKLGTJkSNZYY41su+22+dznPtf+nNmzZ2e33XbLiBEj8rvf/W6xOvfcc08OPfTQjB8/PhdddFGn288+++z85Cc/ya9//es899xz2XnnnfOTn/wkLS0tufHGG3P77bfn0UcfzYsvvpgkGTVqVD7ykY/k8MMPT319/RJfi0rOedH5nH/++bnzzjvz/PPPp66uLuuss04mTJiQSZMmZcSIER3az5kzJ+ecc057+5VWWimbbLJJJk2alI985COd/7D6CHfPAQAA+rlSqZSGzTZLa2tr1WsXi8WUSqWq1wUAAAAA6G9++MMf5rzzzsu2226bXXbZJQ888EBuvfXWTJs2Lddff31WW2219rZXXXVVTjjhhNTU1GSLLbbIlltumXnz5mXOnDm57LLLMn78+C6DS5WaP39+Jk2alKeeeirjxo3LJptsklVXXTVJ8sorr+S4447Lqquumve+9715//vfnzfeeCN/+ctfcvrpp+d3v/tdfvGLX2TQoEHv+pyTZMqUKfnqV7+axsbGrLvuutlll12yYMGCPP300zn//PPzvve9LxMnTmxvf/fdd+fLX/5y3nrrrWywwQb54Ac/mNdffz0PPvhgpk6dms9//vP5+te/XpXXqScIXgEAAAwApVJJQAoAAAAAoAddeeWVueaaa/K+970vSfLWW2/lsMMOy4MPPphLLrkkX/7yl9vb/uQnP0mSXHrppdlyyy071HnqqadSU1NTtX795S9/yaabbprf/OY3WX311TvsGzp0aM4+++zstNNOHVY3mDt3br7xjW9kypQpufDCC3PkkUd2WruSc54zZ0576Opb3/pWPvvZz3Y4zyeffLJD7RdeeCHHHHNMmpub88Mf/jB77713h7b/8i//kp/+9Kf5wAc+kA984APL/gL1oOr9FAEAAAAAAAAAYIA6+uij2wNISTJkyJAcfvjhSRYu+/dOr776alZeeeXFQldJsv7662fUqFFV7dtJJ520WOgqWRi8+tCHPtQhdJUkw4YNy/HHH58kufXWW7usW8k5n3/++WlsbMzEiRNz2GGHLRYuGzNmTMaMGdP++IILLsibb76ZI488skPoalHbb33rW0mSSy65pMv+9TYzXq0gBqeQauXsFtYCAAAAAAAAAFhx7Lzzzott22CDDZIkL774YoftDQ0Nuffee/Otb30rkydPztixY1Mo9EzeYo011ug04PVOf/nLX3LPPffk2Wefzfz581Mul1Mul5Mks2bN6vJ5lZzzHXfckSQ56KCDutXvRe333HPPTvdvu+22SZIHHnigW/V6g+DVAFcsFlMoFDKmpvO1OJdVoVBYLA0JAAAAAAAAADBQrbPOOottGzJkSJKkpaWlw/bvfOc7+fKXv5xrr7021157bVZZZZVsscUW2XHHHbP//vtnlVVWqVq/1l133S73vfXWW/n617+e22+/vcs28+bN63JfJef83HPPJflHMGtpnnnmmSTJvvvuu8R2r732Wrfq9QbJmQGuVCqloaEhra2tVa1bLBZTKpWqWhMAAAAAAAAAoK/656XzlmTDDTfM9ddfnz/+8Y+54447ct999+XOO+/MH/7wh/zkJz/Jueeem4aGhm7VamtrW+L+QYO6noznBz/4QW6//fZstNFGOfbYY9PQ0JBVVlkldXV1aW5uzmabbbbE2pWcc6Uzei1YsCBJss8++6Surq6i5/YVglcrgFKpJCQFAAAAAAAAALAc1dXVZeedd25fru+VV17JqaeemmuvvTb/+Z//mcsvv7y9XbJwdqrOPP/888vch1tvvTVJ8sMf/jDve9/7Oux7+umnl7luZ9ZZZ53MnDkzs2bNyuqrr96t9k899VSOOeaYrLfeelXty/IieAUAAAAAAECPaKkf2qfrQW9obu7+zCG9UQ+AnvOe97wnX/va13LttddmxowZ7dtXW2211NXV5fXXX8+rr766WGjpzjvvXOZjvvHGG0k6XzLwhhtuWOa6ndlxxx0zc+bMXH311dl6662X2n6nnXbKU089lVtuuSVHHnlkVfuyvAheAQAAAAAAUFXFYjGFJK9svEXVaxf+Xh/6m2KxmJqaQubMGVL12jU1Bb8XAH1IU1NTLr/88uy3336Lhahuv/32JB2DUKVSKVtttVWmTp2an/zkJznxxBPb91133XW58cYbl7kvG2ywQR5//PH84he/yOc///n27XfffXfOP//8Za7bmcmTJ+fqq6/O1VdfnbFjx+Yzn/lMh6UKn3zyySTJmDFjkiSHH354rr322pxxxhlZbbXVMnHixNTW1ra3L5fLeeihhzJ37txMmDChqn2tFv/6AgAAAAAAUFWlUikNm22W1tbWqtcuFosplUpVrws9rVQqZdNNG/xeAKwAWlpacvLJJ+e///u/s/HGG2e99dZLoVDIzJkz8+ijj6ZYLObYY4/t8JyvfOUrOeyww3LRRRflnnvuyQYbbJCZM2fmb3/7Ww477LCcd955y9SXo446Kl/72tfywx/+MLfcckve+973Zs6cObn//vtz5JFH5mc/+1k1TjlJMnLkyPzwhz/M1772tXzve9/Lz3/+8zQ0NKStrS1PPfVUHn/88Zx88sntwasRI0bkjDPOyDHHHJMTTzwxZ5xxRjbccMOsuuqqef311/PYY4/l5Zdfzr/8y78IXgEAAAAAALDiKJVKgiDwT/xeAKwY6uvr8+///u+ZOnVqHn300fzhD39IuVzOWmutlQMPPDCTJ0/O+973vg7PGT9+fM4555ycfvrpeeSRRzJnzpxsvvnm+c53vpPW1tZlDl599KMfzWqrrZYzzjgjjz/+eGbNmpWNNtoo/+///b/sv//+VQ1eJcmHPvSh/PKXv8y5556bu+66K7/73e8yePDgrL322jn88MOz/fbbd2i/ww475IYbbsiFF16YP/zhD5k2bVra2tqyxhprZOzYsTnyyCOz5557VrWP1SR4BQAAAAAAAADACm/GjBkVbU8WzvL0z/uLxWI+9alP5VOf+lRFx//ABz6QD3zgA93uw3bbbbfEvi1r3SVtTzo/53daf/31893vfnep/VpkrbXWyje/+c1885vf7PZz+oqapTcBAAAAAAAAAADgnQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhYq93QEAAPqGlvqhfboeAAAAAAAA9CWCVwAAK7hisZhCklc23qLqtQt/rw8AAAAAAAADjW/BAABWcKVSKQ2bbZbW1taq1y4WiymVSlWvCwAAAAAAAL1N8AoAgJRKJQEpAAAA6Aeam2v6dD0AAFiRCF4BAAAAAAD0ccViMTU1hcyZM6TqtWtqCikWfWUEAPQfzc3NPbKSRzVYDWTF4ioaAAAAAOhzCjVtqdYcLIVCW5UqAfSeUqmUTTdt6JEvGH05CAD0J83NzZk+fXrK5XJvd6VThUIhDQ0Nrq9WEIJXAAAAAECfUVtbTrmcDKpv7u2uAPQ5pVLJF3gAwAqvtbU15XI5T7bNT1P6VvhqcAoZUzMora2trttWEIJXAAAAAECfUSyWUygko0ePzuDBg6tSs6mpKbNmzapKLQAAAPqGppTTmL42w3G15m6mv/ATBwAAAAD6nMGDB6e+vr4q/6tWgAsAAAD6qrlz5+b//u//MmnSpOy0005paGjIhAkTcvTRR+exxx5brP0111yTsWPH5pprrsmf/vSnTJo0KVtttVW23nrrHHnkkXnyySc7tP/617+esWPH5r777uv0+Ndee23Gjh2bH/3oRz1yfn3VcglezZkzJ//2b/+2PA4FAAAAAAAAAAArlCeffDKnnXZa6urqsuuuu+azn/1sttlmm/zud7/LJz7xiUyfPr3T591+++353Oc+lyFDhuSQQw7JtttumylTpuQzn/lMXn311fZ2n/zkJ5MkV1xxRad1Lr/88tTU1OTjH/949U+uD+vRpQZnz56ds88+O9ddd10WLFiQ//zP/+zJwwEAAAAAAAAAwApnzJgxueOOO7Laaqt12D5jxowccsgh+dGPfpRzzz13sefddtttOffcc/OBD3ygfdsPfvCD/OxnP8vVV1+df/mXf0mSjBs3LhtuuGFuueWWnHDCCVl55ZXb2z/xxBO5//77s9NOO2XEiBE9dIZ90zLNeHXTTTflW9/6Vo444ogcd9xxufnmm1Mul9v3v/jiiznxxBOz55575uqrr05ra2s++MEPVqvPAAAAAAAAAADA3w0bNmyx0FWSjB07Ntttt13uueeetLS0LLb/ox/9aIfQVZL2WaseeuihDts/+clPZv78+bnuuus6bL/88suTJIcccsi7OYV+qaIZr9ra2vLFL34xU6ZMSZL2sNWvfvWr3HbbbfnBD36QW265JSeeeGLeeuutlMvl7LDDDvnqV7+azTffvPq9BwAAAAAAAAAA8uc//zkXXHBBHnjggbz22muLBa1ee+21DB8+vMO2hoaGxeqss846SZI33nijw/b9998/P/jBD3LFFVfk0EMPTZK8/fbb+dWvfpXhw4evkJMyVRS8uvLKK3P77bcnSXbcccdstNFGeeutt3L33XfnpptuyrrrrpvzzjsvCxYsyGabbZZ//dd/zbhx43qi3wAAAAAAAAAAQJJbb701X/3qVzNo0KDsuOOOGTlyZAYPHpxCoZDbbrstjz32WJqbmxd73juXDFykWFwYJ2pra+uwfejQodl3331z+eWX57777ss222yTm2++OW+88UaOOuqo9uetSCo64xtuuCGFQiGnnXZaPvKRj7Rvb2lpydFHH51zzjknSXLYYYflX//1X1MoFKrbWwCAfqa5eZlWdl5u9QAAAAAAAOj/Tj/99JRKpVxzzTXZYIMNOux74IEHqnacT37yk7n88stzxRVXZJtttskVV1yRmpqaHHzwwVU7Rn9SUfDq8ccfz/vf//4Ooaskqaury9e+9rX8/ve/z7rrrit0BQCs8IrFYmpqCpkzZ0jVa9fUFFbIvxgAAAAAAACgc0899VQ22mijxUJXjY2Nefjhh6t2nE022SRbbrllbrnllnziE5/Ifffdl5133jkjRoyo2jH6k4q+sZs7d+5iP6BFFm3fbLPNhK4AgBVeqVTKpps2pLW1teq1i8ViSqVS1esCAAxkhZq2VGvu0EKhbemNAAAAAJajESNGZNasWXnxxRczfPjwJElra2tOPvnkvPbaa1U91ic/+ckcd9xx+epXv5ok+cQnPlHV+v1JRcGrtra21NXVdbpv0fb6+vp33ysAgAGgVCoJSAEA9LLa2nLK5WRQfXNvdwUAAACoosEpJFX7M6vqWNin3nHooYfmP/7jP3LAAQdkjz32SKFQyD333JOXX34548ePz9SpU6t2rL322isnn3xyXnjhhay11lr50Ic+VLXa/Y01agAA6Jeq/YGqNz8MAQA9p1gsp1BIRo8encGDB1elZlNTU2bNmlWVWgAAAEBlisViCoVCxtQM6u2udKpQKKRYXP5xnE996lOpq6vLhRdemKuvvjpDhgzJ9ttvn7POOitnnnlmVY+10korZZ999snFF1+cAw88MLW1tVWt359U/JO+4447cuihh1a8v1Ao5IILLqj0cAAA0EFPfqDqrQ9DAEDPGzx4sJnaAQAAYAAolUppaGhIa2trb3elU8VisddWRDn44INz8MEHL7b9lFNOySmnnNJh28SJEzNx4sQua82YMWOJx3rkkUdSU1PT6fFWJBV/q/Tyyy/n5Zdfrnh/oWAGAQAA3r2e/EDVmx+GAAAAAACA7imVSu7n96Jp06Zl2rRp2X333bPuuuv2dnd6VUXBq5NPPrmn+gEAAN3mAxUAAAAAAMDy9Ytf/CIvvPBCrr766tTW1ubLX/5yb3ep11UUvDrggAN6qh8AAAAAAAAAAEAfdc455+T555/Peuutl+OPPz6bbLJJb3ep11W81CAAAAAAAMCSFGraUlPNeoW2KlYDAACWxe9+97ve7kKfs0zBq7vuuiu33nprnn322ZRKpWyyySY56KCDss4661S7fwAAAAAAQD9RW1tOuZwMqm/u7a4AAAD0uIqDVyeddFKuvPLKJEm5XE6S/P73v895552XM844IxMmTKhuDwEAAAAAqqClfmifrgcDQbFYTqGQjB49OoMHD65a3aampsyaNatq9QAAAKqhouDVTTfdlCuuuCJJMn78+Gy66aaZN29e7rrrrjz77LM59thj89vf/jb19fU90lkAAAAAgEoVi8UUkryy8RZVr134e32go8GDB/uuAAAAGPAquiNw1VVXpVAo5Lvf/W4OPvjg9u1vv/12vvjFL+buu+/Ob3/72+y7775V7ygAAAAAwLIolUpp2GyztLa2Vr12sVhMqVSqel0AAACg76soePXoo4/mfe97X4fQVZKstNJKOfbYY3PAAQfkkUceEbwCAAAAAPqUUqkkIAUAAABUVU0ljd94441suOGGne5btH3u3LnvvlcAAAAAAAAAAAB9WEXBq7a2ti7/Kqyuri5JsmDBgnffKwAAAAAAAAAAgD6soqUGAQAAAAAAYCAanEIqnLOgG/UAABjIKg5e3XHHHTn00EMr3l8oFHLBBRdUejgAAAAAAADoMcViMYVCIWNqBlW9dqFQSLFoHgQAqLbm5ua0trb2djc6VSwWu1xNjoGn4iu9l19+OS+//HLF+wsFqX4AAAAAAAD6llKplIaGhh758tYXrwBQfc3NzXn44elpayv3dlc6VVNTyKabNgy4a4DTTz89Z5xxRi688MJst912SZLZs2dnt912ywEHHJBTTjml1/qxNJMmTcrUqVMzY8aMqvenouDVySefXPUOAAAAAAAAQG8qlUoD7stRABioWltb09ZWzogRb6VUauvt7nTQ3FyTOXOGpLW19V1fW4wdOzZJUlNTk9///vdZe+21O2239957569//WuSVBRGojoqCl4dcMABPdUPAAAAAAAAAADollKpLYMHL+jtbvSoYrGY1tbWXH311fnSl7602P777rsvf/3rX9vbLW9rrbVWbrrppgwbNmy5HfPTn/50PvrRj2bdddddbsdckoqCV4899lhWXXXVLlN0fUm5XM5VV12VSy+9NH/7299SV1eXzTffPF/4whcybty4imq1trbm5z//ea699to8/fTTqa+vz7hx4/KVr3ylPWH4ToumKOvMGmuskbvuumuZzgkAAAAAAAAAgBXDe97znqyxxhq5+uqr88UvfjGFQqHD/quuuip1dXXZYYcdMmXKlOXev7q6uowZM2a5HnP11VfP6quvvlyPuSQVBa/233//TJw4Md///vcX23fGGWdkk002yW677Va1zr0b3/ve93LRRRdlxIgROeSQQ/LWW2/lxhtvzKGHHpof//jH2WOPPbpVp1wu55hjjsltt92WjTbaKIceemhefPHF3Hzzzbnjjjty/vnnZ+utt+70uV/+8pcX21ZfX/+uzgtYsTQ31/TpegAAAAAAAAD0nIMOOij/8R//kbvvvjsTJkxo3z5v3rzccsst2XXXXZeYRXn22Wdz9tln584778yLL76YYcOGZfz48Tn66KM7DU1Nnz49P/rRjzJt2rQUCoVsvvnmOeaYYzqtPXv27Oy222454IADcsopp3TY19TUlIsuuii33HJLZs6cmSRZe+21M2HChHzhC1/IGmuskSSZOXNmrrrqqvzxj3/MnDlz8tZbb2WttdbKBz/4wXzpS19aLGR1+umn54wzzuh0WcUbb7wx5557bv76179myJAh2XHHHXPssccu4dV99yoKXiULg0idOeOMM3LAAQf0ieDVn//851x00UUZPXp0rrrqqvYpzT71qU/l4x//eE466aRMmDAhQ4cOXWqtX/3qV7ntttsybty4nHfeee1rcO6zzz458sgjc8IJJ+SGG25IbW3tYs/9yle+Ut0TA1YYxWIxNTWFzJkzpOq1a2oKKRYrHv4BAAAAAAAAWM723Xff/Pd//3euvPLKDsGr66+/Po2NjTn44INz4403dvrchx56KJ/73Ocyd+7c7Lzzztljjz3y0ksv5Te/+U3+8Ic/5MILL8xmm23W3n7atGk57LDD0tLSkg9/+MNZf/318+ijj2bSpEnZfvvtu93nN954I4ceemgee+yxjBkzJgceeGDq6ury9NNP5+qrr86HP/zh9uDVb37zm1xxxRXZfvvts80226S2tjYPP/xwLr744tx55525+uqru5Xv+fnPf56TTz45K6+8cvbff/8MGzYsd955Zz75yU926/nLakB+837ZZZclSY466qgO60husskm2WeffXLNNdfk5ptvzsEHH9ztWsccc0x76CpJdtlll4wfPz5Tp07N1KlT84EPfKDKZwGsyEqlUjbdtKFH1uEtFosdxjMAAAAAAAAA+qZhw4Zljz32yI033pjXXnstq622WpLkyiuvzIgRIzJhwoROg1ctLS356le/mrfffju/+MUvstVWW7Xve/LJJ3PQQQflxBNPzC9/+cskCydiOv744zN//vyceeaZ2X333dvbX3DBBZ2ujteV7373u3nsscfy6U9/Ov/2b//WYYnEefPmpa2trf3xxz72sUyePHmx77CvvvrqHH/88bnkkkvy+c9/fonHmz17dv7nf/4nq6yySq655pqMHDkySfKNb3wjxxxzTH796193u++VGpBrTt1zzz1J0iHpt8iOO+6YJJk6depS67z99tt58MEHU19f3+lygjvttFOH4/2zm266KT/96U/z85//PHfddVdaWlq6fQ4ApVIp9fX1Vf+f0BUAAAAAAABA/3HwwQenpaWlPST16KOP5uGHH87EiRNTU9N59GfKlCmZPXt2Jk2a1CF0lSRjxozJxz/+8Tz22GN54oknkiyc7WrmzJkZN25ch9BVknzmM5/Jeuut162+vvLKK7npppsyfPjwfPOb3+wQukqSoUOHZuWVV25/vNZaa3X6HfbEiRMzdOjQ3HXXXUs95vXXX5+WlpZ85jOfaQ9dJUlNTU3+9V//tcvXqBoG3IxXjY2NefHFF1NfX58111xzsf3rr79+kmTWrFlLrfX0009nwYIFGTlyZKdLCS6t1te+9rUOj9dZZ518//vfzw477LDUYy9NuVxOY2Pju64DMJAsae3id6u3x92mpqZ+U78/9RV4d3py3E16f+wF6Itc8/aN+v2prz3J69BzvLZ9x0C+5u1v77P+1l9g2Q3ka16Avqinr3mpjm233TYbbLBBrrrqqkyePDlXXHFFampqctBBB3X5nPvvvz9J8swzz+T0009fbP/MmTOTJH/729+y0UYb5ZFHHkmSjBs3brG2tbW12WabbfL0008vta8PPfRQ2trasu2222bw4MFLbV8ul3PdddflmmuuyeOPP54333yzw4xYL7zwwlJrLKnvo0aNyjrrrJM5c+Ystc6yGHDBq7lz5yZJhyUG32nRuo1vvvlmt2t1tdbjou2L2i2y22675Ygjjsgmm2ySlVdeObNnz85ll13WPv3ZpZdemoaGhu6dUBdaWlry6KOPvqsaAAPNNtts02O1B/q4251Acl/Rn/oKA11PjrvJwB97AZaFa95l15+uI/tTX3uS16HneG27zzXvsutv77P+1l8YyFzzAixfPX3NS/UcdNBBOfXUU/OnP/0pN9xwQ3baaaesvfbaXbZ/4403kiS33HLLEusuCiUvyr6sscYanbbravs/W5THWWuttbrV/nvf+14uuuiirL322tlll106zIB1wQUXdGt1ue70vc8Er15++eXce++9Fe9LOk+WdWXXXXet6KQPPfTQnHDCCd1u35MmT57c4fGGG26YE088MYMGDcr//d//5cwzz8xZZ531ro5RV1eXDTfc8F3VAKD7envcbWpq6tEbgKNHj+5W4rw7+lNfgb6tt8degBVNb4+7/ek6sj/1tSd5HXqO13bF0Ztjb397n/W3/gJ9U29f8wLAu7H//vvnxz/+cY477ri8+eabOfjgg5fYftGERT/84Q+z9957L7X+ovYvv/xyp/u72v7PFi0j2J2Zql555ZVccsklGTt2bC677LIOM7C1tbXlnHPO6dYx39n3jTbaaLH93e37sqg4eHXnnXfmzjvvXGx7oVDoct+i/Yum9uqOUaNGdbqGY1cWpdYWvZj/PAvVIvPmzUuSDutFdmVRrUXP6apWV7Nr/bOPf/zj+b//+79MmzatW+2XpFAomPIPYDka6OPu4MGD+8359ae+Au/OQB97AfqagT7u9qfryP7U157kdeg5Xtu+YyCPvf3tfdbf+gssm4E87gIw8K2xxhr54Ac/mN/85jdZY4018qEPfWiJ7TfffPMkC5cc7E7w6v3vf3+SdDrh0oIFC3Lfffd1q5+bb755ampq8uc//zlNTU1L/AOHZ555Jm1tbdlhhx0W+zd6+vTpmT9/freO+f73vz+//vWvc++99+YDH/jAYsd47rnnulVnWVQUvFp33XV7qh+LueCCC5bpefX19Rk+fHhefPHFvPTSS1lzzTU77H/qqaeSLPzrlaVZb731Ultbm9mzZ2fBggWpra1d5lpJstpqqyWJtaMBAAAAAAAAAKjIcccdl/333z/Dhw9PsbjkyM9uu+2WESNG5NJLL80uu+ySnXbaqcP+tra23Hvvvdluu+2SJFtvvXU22GCD3Hvvvbntttuy++67t7e9+OKL8/TTT3erj6uvvno++tGP5oYbbsipp56af/u3f0uhUGjf/9Zbb6WtrS3Dhg3LiBEjkiTTpk3rkMt57bXX8t3vfrdbx0uSfffdN2eeeWYuvvjiTJw4MSNHjmw/x//+7/9OW1tbt2tVqqLg1e9+97ue6kdVbbfddrn++utz1113Zf/99++wb9GMXOPHj19qnZVWWilbbLFFpk2blmnTpi22VOIdd9zRfrzuePDBB5Ok/QcMAAAAAAAAAEDlmptrersLi+npPo0aNSqjRo3qVttSqZTTTz89n/vc53LEEUdk3LhxGTt2bOrq6vLss8/mgQceyGuvvZaHHnooycKZIb/3ve/l8MMPz9FHH50Pf/jDWX/99fPoo4/mj3/8Y3baaaf2nMzSnHTSSXniiSdyySWX5E9/+lMmTJiQurq6zJ49O3feeWfOOuusbLfddllzzTWz55575pZbbskBBxyQCRMm5PXXX88dd9yRkSNHZvjw4d063siRI/ONb3wjp5xySg444IDstddeGTZsWO68887MnTs3Y8eOzYwZM7pVq1IVLzXYHxxyyCG5/vrrc9ZZZ2W33XZrXwrw0UcfzQ033JBVV101e+65Z4fnvPjii5k7d26GDx/eYenAQw45JNOmTctpp52W8847r335wylTpmTq1KnZYIMNOoS4nnnmmQwbNiyrrrpqh/rPPfdc/vM//zPJwqQdAAAAAAAAAACVKRaLqakpZM6cIb3dlU7V1BSWOhvV8rLpppvmV7/6Vc4///zcfvvtufLKK1NbW5vhw4dn/Pjx2WOPPTq032abbXLJJZfkRz/6Uf7whz8kSbbYYotcdNFFufPOO7sdvFpllVVy2WWX5YILLshNN92UK664IjU1NVlnnXVy4IEHZsMNN2xve/LJJ2fUqFG5+eabc/HFF2fNNdfMfvvtly9/+cvZZ599un2uhx12WNZcc82ce+65ufbaazNkyJDsuOOO+eY3v5ljjz2223Uq1Td+0lW27bbbZtKkSbnooovysY99LB/5yEfy1ltv5cYbb0xra2u++93vdghXJckPf/jDXHvttTn55JMzceLE9u377bdfbr311vz2t7/NxIkTs8suu+Sll17KTTfdlJVWWinf//73OyxBeO+99+Y73/lOtt1224wcOTLDhg3L7Nmzc/vtt2f+/PmZMGFCjjjiiOX2WgAAAAAAAAAADBSlUimbbtqQ1tbW3u5Kp4rFYvukPu9GJTM0nXLKKTnllFM63Td8+PAcd9xxOe6447pVq6GhIeeee+5i27faaqt85Stf6bBt5MiRXfazvr4+Rx11VI466qglHq++vj7HHntsp+Gozlbm+8pXvrJYPxbZZ599Og1rXXTRRUvsw7sxIINXSXLCCSdk7Nix+cUvfpFLL700xWIxW265ZY466qjFlgxckkKhkNNOOy0XXHBBrrnmmlx44YWpr6/PLrvskqOPPjpjx47t0H7TTTfNXnvtlYcffjjTp0/PW2+9laFDh2bzzTfPfvvtlwMPPDA1NX1vujsAAAAAAAAAgP6gVCpVJdwE79aADV4VCoUcfPDBOfjgg7vVfknpv7q6uhxxxBHdmqlq7Nix+X//7/9V1FcAAAAAAAAAAKB/MfUSAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoVe7sDAAAAAAAsbnAKqebfzi6sBwAAAFSL4BUAAAAAQB9SLBZTKBQypmZQ1WsXCoUUi24LAwAAQDX4hA0AAAAA0IeUSqU0NDSktbW16rWLxWJKpVLV68Ly0lI/tE/XAwAAViyCVwAAAAAAfUypVBKQgncoFospJHll4y2qXrvw9/oAAACV8kkCAAAAAADo00qlUho228xMcAAAQJ8ieAUAAAAAAPR5ZoIDAAD6GsErAAAAAAAAAAD6jebm5h6ZDbUazKi6YhG8AgAAAAAAAACgX2hubs706dNTLpd7uyudKhQKaWhoGHDhq9NPPz1nnHFGLrzwwmy33XZJktmzZ2e33XbLAQcckFNOOaWXe9g7BK8AAAAAAAAAAOgXWltbUy6XM7+xlHJbTW93p4NCTVsG1S+cjevdBq/Gjh2bJKmpqcnvf//7rL322p2223vvvfPXv/41STqEolg+BK8AAAAAAAAAAOhXym01aetjwatq96ZYLKa1tTVXX311vvSlLy22/7777stf//rX9nbL21prrZWbbropw4YNW+7H7iv61jsQAAAAAAAAAADIe97znmy66aa5+uqrO11a8aqrrkpdXV0mTJjQC71L6urqMmbMmAwfPrxXjt8XCF4BAAAAAAAAAEAfdNBBB2XOnDm5++67O2yfN29ebrnlluy6665ZffXVu3z+s88+m5NOOim77rprGhoa8oEPfCDHHHNMnnzyyU7bT58+PZ/73Oey1VZbZeutt87kyZNz//33d9p29uzZGTt2bL71rW8ttq+pqSk/+9nPMnHixGy11VbZaqutstdee+W//uu/8vLLL7e3mzlzZk499dRMnDgx2223XRoaGrLbbrvlP//zP/Pqq68uVvdb3/pWxo4dm2eeeSYXXXRR9t1332y++eaZNGlSe5vGxsaceeaZ2XfffbPFFltk6623zqRJkzJlypQuX6dlJXgFAAAAAAAAAAB90L777pvBgwfnyiuv7LD9+uuvT2NjYw4++OAun/vQQw9l//33z5VXXpmNNtookyZNyoQJE3L77bfnoIMOykMPPdSh/bRp0/LpT386f/zjH7PzzjvnM5/5TOrq6jJp0qQ8+OCD3e7zG2+8kUMOOSQ/+MEPMn/+/Bx44IE55JBD8t73vjdXX311h9DXb37zm1xxxRUZMWJE9ttvv3zmM5/Juuuum4svvjif/OQnM2/evE6P8b3vfS+nnXZa3ve+9+XQQw/N1ltv3eHY//u//5tBgwbl4x//ePbZZ5889dRTOfLII3PppZd2+zy6o1jVagAAAAAAAAAAQFUMGzYse+yxR2688ca89tprWW211ZIkV155ZUaMGJEJEybkxhtvXOx5LS0t+epXv5q33347v/jFL7LVVlu173vyySdz0EEH5cQTT8wvf/nLJEm5XM7xxx+f+fPn58wzz8zuu+/e3v6CCy7I97///W73+bvf/W4ee+yxfPrTn86//du/pVAotO+bN29e2tra2h9/7GMfy+TJk1MqlTrUuPrqq3P88cfnkksuyec///nFjvHwww/n2muvzahRozps/6//+q/MmDEjxx9/fD772c92OO6kSZPy/e9/P7vvvnvWXHPNbp/PkpjxCgAAAAAAAAAA+qiDDz44LS0t7SGpRx99NA8//HAmTpyYmprOoz9TpkzJ7NmzM2nSpA6hqyQZM2ZMPv7xj+exxx7LE088kWThbFczZ87MuHHjOoSukuQzn/lM1ltvvW719ZVXXslNN92U4cOH55vf/GaH0FWSDB06NCuvvHL747XWWmux0FWSTJw4MUOHDs1dd93V6XGOOOKIxUJXr776am688cZsscUWHUJXi4775S9/Oc3Nzfn1r3/drXPpDjNeAQAAAAAAAABAH7Xttttmgw02yFVXXZXJkyfniiuuSE1NTQ466KAun3P//fcnSZ555pmcfvrpi+2fOXNmkuRvf/tbNtpoozzyyCNJknHjxi3Wtra2Nttss02efvrppfb1oYceSltbW7bddtsMHjx4qe3L5XKuu+66XHPNNXn88cfz5ptvdpgR64UXXuj0eZtvvnmnx16wYEHa2to6PedXX301ycJzrhbBKwAAAAAAAAAA6MMOOuignHrqqfnTn/6UG264ITvttFPWXnvtLtu/8cYbSZJbbrlliXUbGxuTJHPnzk2SrLHGGp2262r7P3vzzTeTLJzJqju+973v5aKLLsraa6+dXXbZpcMMWBdccEFaWlq63Z9F5/zQQw/loYce6vKYi865GgSvAAAAAAAAAACgD9t///3z4x//OMcdd1zefPPNHHzwwUtsP2zYsCTJD3/4w+y9995Lrb+o/csvv9zp/q62/7NFywh2NVPVO73yyiu55JJLMnbs2Fx22WWpr69v39fW1pZzzjmny+f+8xKGyT/O4ROf+ES++93vdqu/71bnCz0CAAAAAAAAAAB9whprrJEPfvCDef7557PGGmvkQx/60BLbL1qKb9GSg0vz/ve/P0ly7733LrZvwYIFue+++7pVZ/PNN09NTU3+/Oc/p6mpaYltn3nmmbS1tWWHHXboELpKkunTp2f+/PndOuYim222WQqFQh588MGUy+WKnrusBK8AAAAAAAAAAKCPO+6443LmmWfmrLPOSrG45EXudtttt4wYMSKXXnpp7rjjjsX2t7W15Z577ml/vPXWW2eDDTbIvffem9tuu61D24svvjhPP/10t/q4+uqr56Mf/WhefPHFnHrqqYsFoN566632ZQ1HjBiRJJk2bVoWLFjQ3ua1115bphmr1lhjjey999557LHHcsYZZ6StrW2xNo8//nheeeWVimt3xVKDAAAAALAMWuqH9ul6AAAAMJAVatr63GxDhZrFgz7VNGrUqIwaNapbbUulUk4//fR87nOfyxFHHJFx48Zl7Nixqaury7PPPpsHHnggr732Wh566KEkC5fu+973vpfDDz88Rx99dD784Q9n/fXXz6OPPpo//vGP2WmnnToNcHXmpJNOyhNPPJFLLrkkf/rTnzJhwoTU1dVl9uzZufPOO3PWWWdlu+22y5prrpk999wzt9xySw444IBMmDAhr7/+eu64446MHDkyw4cPr/g1+vd///fMnDkzZ5xxRm666aZsvfXWWW211fL888/n8ccfz4wZM3L55ZfnPe95T8W1OyN4BQAAAAAVKBaLKSR5ZeMtql678Pf6AMtLc3N1v6qqdj0AAPhnxWIxhUIhg+qbe7srnSoUCn3ms/2mm26aX/3qVzn//PNz++2358orr0xtbW2GDx+e8ePHZ4899ujQfptttskll1ySH/3oR/nDH/6QJNliiy1y0UUX5c477+x28GqVVVbJZZddlgsuuCA33XRTrrjiitTU1GSdddbJgQcemA033LC97cknn5xRo0bl5ptvzsUXX5w111wz++23X7785S9nn332qficV1555Vx66aW59NJLc+ONN+bmm29OS0tL1lxzzYwZMyaf+tSn8r73va/iul0plJfXooZUzaK04WabbdbLPQFYMfSFcbexsTGPPvpoNthgbgYPXrD0J3RTU1NtZs4clk022WSxdZOX1aK+rj3trpTmvVmVmknSPHTlPL/1hKr2Fei7+sLYC7Ai6Qvjbn+65k2S5ubmtLa2Vq3eIsViMaVSqep1e0J/+5lBX9PbY29zc3Mefnh62tqq/xVBTU0hm27a0G/GM2DF0NvjLgDV1VOfy6uhP322593rGxE7AAAAAOhHSqWSm6hAv1YqlbLppg0rfIgUAID+yedy+grBKwAAAAAAWAH5sgoAAODdsdg6AAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFSo2NsdAAAGppb6oX26HgAAAAAAAMC7IXgFAFRVsVhMIckrG29R9dqFv9cHAAAAAAAA6G2+uQQAqqpUKqVhs83S2tpa9drFYjGlUqnqdQEAAAAAAAAqJXgFAFRdqVQSkAIAAAAAAAAGtJre7gAAAAAAAAAAAEB/Y8YrAAAAAAAAAAD6jebm5rS2tvZ2NzpVLBb79MowkyZNytSpUzNjxoze7sqAIHgFAAAAAAAAAEC/0NzcnOkPPZRyb3ekC4UkDZttVrXw1UMPPZRf/OIXmTp1al566aUUi8WMGDEiO+64YyZPnpy11lqrQ/trrrkm3/72t3PyySdn4sSJVekDXRO8AgAAAAAAAACgX2htbU05yXseezB1jfN6uzsdtNQPzSsbb5HW1tZ3Hbwql8v5n//5n5xzzjkpFovZYYcdsueee6alpSX3339/zjvvvFx66aU55ZRTsueee1bpDKiU4BUAAAAAAAAAAP1KXeO8lOa92dvd6DFnnnlmzjnnnIwYMSI//elPs9FGG3XYf+utt+ab3/xmvv71r2fVVVfN9ttv30s9XbHV9HYHAAAAAAAAAACAhWbPnp2zzjordXV1OeussxYLXSXJHnvskW9/+9tZsGBBvvOd76StrS2TJk3Kt7/97STJt7/97YwdO7b9f/+stbU1Z599dj7ykY+koaEhu+yyS0499dQ0Nzd32qcnnngixx57bHbaaac0NDRkp512yvHHH5/nn39+sbZjx47NpEmT8tJLL+WEE07ITjvtlE022STXXHPNu3xl+h4zXgEAAAAAAAAAQB9xzTXXpLW1NXvttVenoalFDj744Jx55pmZOXNmpk6dmgMOOCDDhg3Lb3/72+y2227ZZJNNunzuN77xjdx3333Zaaedsssuu+QPf/hDzjnnnLz66qs5+eSTO7S9/fbbc/TRR6etrS277rprRo4cmdmzZ+e6667LH/7wh1x++eUZMWJEh+e8/vrr+cQnPpH6+vp85CMfSaFQyHve855398L0QYJXAAAAAAAAAADQR9x3331Jkh122GGJ7YrFYrbbbrvccMMNmTZtWr74xS8mSX77299m9913z8SJE7t87jPPPJMbbrghq666apLka1/7Wj72sY/luuuuy9e//vWsueaaSZLXXnstxx57bIYMGZJLL700o0ePbq8xderUTJ48Of/1X/+Vs846q0P9xx9/PB/72Mfy/e9/P8XiwI0nWWoQAAAAAAAAAAD6iJdeeilJsvbaay+17TrrrJMkefHFFys6xrHHHtseukqS+vr67Lvvvmlra8v06dPbt//yl7/M3Llzc/TRR3cIXSXJ+PHjs+uuu+b222/PvHnzOuyrq6vLcccdN6BDV4kZrwAAAAAAAAAAYIXS0NCw2LZFIa433nijfdsDDzyQJHnkkUdy+umnL/acl19+OW1tbZk1a1aHmiNGjBiQSwv+M8ErAAAAAGCZNTdXd1L9atcDAACA/maNNdbIk08+meeff36pbZ977rkkyfDhwys6xsorr7zYttra2iRJW1tb+7ZFIawrrrhiifUaGxs7PF60VOFAJ3gFAAAAAFSsWCympqaQOXOGVL12TU1hwC9FAAAAAF3ZZpttcs899+Tuu+/Oxz/+8S7bLViwIFOnTk2SbL311j3Sl2HDhiVJLr/88my55Zbdfl6hUOiR/vQ17l4AAAAA0GeYPan/KJVK2XTThrS2tla9drFYTKlUqnpdAAAA6A8mTpyYn/70p7ntttvyxBNPZKONNuq03dVXX50XX3wxG2ywQcaPH58kqalZeC9kwYIFVenL5ptvnltvvTUPPPBARcGrFYXgFQAAAAC9zuxJ/VOpVBKQAgAAgCobNWpUPv/5z+cnP/lJjjrqqJx99tnZcMMNO7S57bbb8r3vfS+1tbX5zne+0x64WnXVVZOkW8sUdsfEiRNz1lln5Ywzzsi4ceOy6aabdtjf0tKSBx98MNtuu21VjtffuOMEAAAAQK8zexIAAADAP3zlK19JU1NTzj///HzsYx/LjjvumA033DCtra25//778+CDD2bQoEH5wQ9+kO233779eVtuuWUGDRqUCy64IG+88UZWX331JMkXv/jFZerH6quvnh/96Ec55phjctBBB2WHHXbIhhtumAULFuS5557Ln//856y22mq55ZZbqnLe/Y3gFQAAAAB9gtmTAAAAgO5qqR/a211YTDX7VFNTk29961v56Ec/mksuuST33ntv/vjHP6a2tjYjRozI4Ycfns9+9rNZe+21Ozxv1VVXzf/+7//m9NNPz5VXXpn58+cnWfbgVZLsvPPOue6663Luuefm7rvvztSpU7PSSitlrbXWyoc//OHsvffe7+pc+zPBKwAAAAAAAAAA+oVisZhCklc23qK3u9KpQhb2sVo233zzbL755hU9Z5dddskuu+zS6b6LLrqoy+dNnDgxEydO7HTf+uuvn+9+97vdOv6MGTO61W4gELwCAAAAAAAAAKBfKJVKadhss7S2tvZ2VzpVLBbN6L0CEbwCAAAAAAAAAKDfKJVKwk30CTW93QEAAAAAAAAAAID+RvAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIWKvd2BnlIul3PVVVfl0ksvzd/+9rfU1dVl8803zxe+8IWMGzeu23WeeeaZ/PKXv8wjjzySRx55JM8991ySZMaMGUt83pw5c3LaaaflrrvuyhtvvJF11lknH/3oR/OFL3whgwcPflfnBgAAAAAAAAAA9K4BO+PV9773vZx44ol5/fXXc8ghh2TPPffM/fffn0MPPTS33nprt+vce++9Of300/P73/8+gwcPzkorrbTU58yaNSsHHnhgfvWrX2XrrbfO5MmTs/rqq+fss8/O5MmTM3/+/HdzagAAAAAAAAAAQC8bkDNe/fnPf85FF12U0aNH56qrrsqwYcOSJJ/61Kfy8Y9/PCeddFImTJiQoUOHLrXWuHHjctlll2XjjTfO4MGDs+uuu2bOnDlLfM53vvOdvPbaa/nOd76TT37yk0kWzsD1jW98IzfeeGPOP//8HHXUUe/+RAEAAAAAAAAAgF4xIGe8uuyyy5IkRx11VHvoKkk22WST7LPPPnn99ddz8803d6vWqFGjstVWW3V7ecCnnnoqf/zjHzNq1Kgccsgh7dsLhUK+8Y1vJEmuuOKKlMvl7p4OAAAAAAAAAADQxwzI4NU999yTJJkwYcJi+3bcccckydSpU3v02DvssEMKhUKHfSNGjMgGG2yQZ599Ns8880yPHB8AAAAAAAAAAOh5A26pwcbGxrz44oupr6/Pmmuuudj+9ddfP0kya9asHjn+zJkzkySjR4/udP/o0aMzc+bMzJw5M+utt94yH6dcLqexsXGZnw8wENXX1/dY7d4ed5uamvp1fWBg6slxN+n9sRegLxrI17wAfZFrXoDlzzUvwPLV09e8MNANuODV3Llzk6TDEoPvNHTo0CTJm2++2SPHnzdv3hKPP2TIkCT/6OeyamlpyaOPPvquagAMNNtss02P1R7o425PBZKBga0nx91k4I+9AMvCNS/A8uWaF2D5c80LsHz19DUvDHR9Nni16667Zs6cOd1uf+ihh+aEE07owR71LXV1ddlwww17uxsAK4zeHnebmpp6NBw1evToDB48uMfqAyyL3h57AVY0xl2A5c/YC7B8GXcBgGrrs8GrUaNGpVQqdbv9GmuskeQfM011NaPUohmpVl555XfZw84tmlGrq+O/9dZbSbqeEau7CoWCKf8AlqOBPu4OHjx4QJ8f0D8N9LEXoK8x7gIsf8ZegOXLuAsAVFufDV5dcMEFy/S8+vr6DB8+PC+++GJeeumlrLnmmh32P/XUU0kWzuzREzb4/+z9fZzVdZ0//j/OzOHIDBeZISpCotgiiaYiUKnZL13DvEqzJBVSM8tb7lrfzWrV3K7tYrfWVT/ZxVZqKVuWmqh5tSuJJpBohpeloogXeIEKzMAwzPn9QUxOMMOc4cwFw/1+u3mTc97P8zqvMxfPec37POb13nnnJO1fsmnd/evqAAAAAAAAAACAzU9Nb0+gO0yePDlJcuedd653bPbs2UmSSZMmdetz33XXXSmXy22OLV68OE888UR22GGHjBo1qlueHwAAAAAAAAAA6H79Mng1derUJMn3vve9Npf8e+ihhzJz5sxsvfXWmTJlSpvHLFmyJI899li7lwjsrJ122inveMc7smjRosyYMaP1/nK5nO985ztJkuOOOy6FQmGTngcAAAAAAAAAAOg9ffZSg5ti3333zbRp03L55ZfnqKOOyiGHHJIVK1bk+uuvT3Nzc7785S9nyJAhbR7zne98J1dffXXOP//8HHPMMa33v/zyy/nWt77Venvp0qVJks9//vOt933sYx/LmDFjWm9/8YtfzHHHHZcvfelL+f3vf583v/nNmTdvXu6777687W1vy8knn9xdLx0AAAAAAAAAAOgB/TJ4lSTnnHNOxo4dmyuuuCJXXnllisVi9tprr5x++umZOHFip8dpaGjI1Vdfvd79r7/v6KOPbhO8Gj16dH71q1/lggsuyJ133pn//d//zfbbb59PfOIT+fjHP56BAwdu2osDAAAAAAAAAAB6Vb8NXhUKhXzwgx/MBz/4wU7Vf+Mb38g3vvGN9e4fOXJkHnnkkYqff+TIkfn2t79d8eMAAAAAAAAAAIC+r6a3JwAAAAAAAAAAALC5EbwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoVe3sC3aVcLueqq67KlVdemccffzwDBgzInnvumU984hOZOHFip8dZtGhRrr322jz44IN58MEH8+yzzyZJHnnkkXYfM23atMydO3eDx4YNG5Y777yzshcDAAAAAAAAAAD0Kf02ePW1r30tl19+eXbcccdMnTo1K1asyPXXX5/p06fnP//zP/Pe9763U+PMmzcvF154YWpqajJ69OhstdVWWbVqVacee8YZZ6x3X319fUWvAwAAAAAAAAAA6Hv6ZfDqD3/4Qy6//PKMHj06V111VYYMGZIkOf744/OhD30o5513Xvbbb78MHjx4o2NNnDgxM2bMyG677Za6urq85z3vyeLFizs1j3/6p3/apNcBAAAAAAAAAAD0TTW9PYHuMGPGjCTJ6aef3hq6SpJx48bl8MMPzyuvvJIbb7yxU2ONGjUqe++9d+rq6rplrgAAAAAAAAAAwOanXwav5syZkyTZb7/91ju2//77J0nmzp3b7fO44YYb8v3vfz8//elPc+edd2b16tXd/pwAAAAAAAAAAED363eXGmxoaMiSJUtSX1+fbbfddr3jO+20U5Jk4cKF3T6XT3/6021u77DDDvn617+ed77znZs8drlcTkNDwyaPA9Cf1NfXd9vYvd13GxsbN+vxgf6pO/tu0vu9F6Av6s9rXoC+yJoXoOdZ8wL0rO5e80J/1++CV8uWLUuSNpcYfL3BgwcnSV577bVum8NBBx2UU089NePGjcvQoUPz9NNPZ8aMGfn5z3+ej3/847nyyiszfvz4TXqO1atX56GHHqrSjAH6hwkTJnTb2P297/ZEIBnof7qz7yb9v/cCdIU1L0DPsuYF6HnWvAA9q7vXvNDf9dng1Xve854sXry40/XTp0/POeec040z6ryTTjqpze1dd9015557bgYOHJgf/vCHufjii/O9731vk55jwIAB2XXXXTdpDAA6r7f7bmNjY7eGo0aPHp26urpuGx+gK3q79wJsafRdgJ6n9wL0LH0XAKi2Phu8GjVqVEqlUqfrhw0bluRvO12t2/nq7y1fvjxJMnTo0E2cYeU+9KEP5Yc//GHmz5+/yWMVCgVb/gH0oP7ed+vq6vr16wM2T/299wL0NfouQM/TewF6lr4LAFRbnw1eXXrppV16XH19fYYPH54lS5bkhRdeyLbbbtvm+JNPPplk7c4ePe2Nb3xjkrh2NAAAAAAAAAAAbOZqensC3WHy5MlJkjvvvHO9Y7Nnz06STJo0qUfnlCR//OMfkyQjR47s8ecGAAAAAAAAAACqp18Gr6ZOnZok+d73vtfmkoMPPfRQZs6cma233jpTpkxp85glS5bksccea/cShZ21aNGivPLKK+vd/+yzz+YrX/lKkuSII47YpOcAYMvV1FSTxsbaqv3X1NQvlwIAAAAAAAAA3a7PXmpwU+y7776ZNm1aLr/88hx11FE55JBDsmLFilx//fVpbm7Ol7/85QwZMqTNY77zne/k6quvzvnnn59jjjmm9f6XX3453/rWt1pvL126NEny+c9/vvW+j33sYxkzZkySZN68efniF7+YfffdNyNHjsyQIUPy9NNP5/bbb8/KlSuz33775dRTT+3Olw9AP1QsFlNTU8jixYOqPnZNTSHFYr9cEgAAAAAAAAB0m377Lus555yTsWPH5oorrsiVV16ZYrGYvfbaK6effnomTpzY6XEaGhpy9dVXr3f/6+87+uijW4NXu+++ew499NA88MADWbBgQVasWJHBgwdnzz33zJFHHpkPfOADqamxuwgAlSmVStl99/Fpbm6u+tjFYjGlUqnq4wIAAAAAAAD0Z4VyuVzu7UlQmT/96U9Jkj322KOXZwKwZdB3AXqe3gvQs/RdgJ6n9wL0LH0XAOgOtl4CAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCxd6eAJVbvXp1yuVy/vSnP/X2VAD6lFKplLFjx1Z9XH0XYMO6q+8mei9Ae6x5AXqWNS9Az7PmBehZ3bnmhS2B4NVmqFAo9PYUALYo+i5Az9N7AXqWvgvQ8/RegJ6l7wIA3aFQLpfLvT0JAAAAAAAAAACAzUlNb08AAAAAAAAAAABgcyN4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCgleboUceeSSPPPJIb08DYIuh7wL0PL0XoGfpuwA9T+8F6Fn6LgDQHYq9PQEq19TU1NtTANii6LsAPU/vBehZ+i5Az9N7AXqWvgsAdAc7XgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFSo2NsTAAAAAAAAAAC2LE1NTWlubq76uMViMaVSqerjAmyI4BUAAAAAAAAA0GOampqyYMGClMvlqo9dKBQyfvx44SugRwheAQAAAAAAAAA9prm5OeVyOY+1rExjqhe+qkshY2oGprm5WfAK6BGCVwAAAAAAAABAj2tMOQ1pqeKINVUcC2DjdB0AAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACrU74NXDz/8cM4444xMnjw5e+65Zw477LD86Ec/SnNzc0XjzJs3Lx/96EczceLE7LXXXjnmmGPyy1/+slOPbWpqyuGHH56xY8fmXe96V1deBgAAAAAAAAAA0IcUe3sC3Wn+/Pk5+eSTs2bNmhx66KEZPnx4Zs2alW9/+9u59957c9FFF6VQKGx0nJtuuimf+tSnUldXl8MOOyyDBg3KzTffnHPPPTePPvpozjnnnA4f/53vfCeLFy+u1ssCAAAAAAAAAAB6Wb/d8WrNmjU5++yzs3Llylx88cX59re/nbPOOiu//vWvs+++++bWW2/Nddddt9Fxli1blvPOOy/FYjE///nP85WvfCWf//znc+2112b06NG57LLLcs8997T7+Dlz5uSnP/1pPvvZz1bz5QEAAAAAAAAAAL2o3wav5syZkyeeeCKTJ0/OgQce2Hp/qVTKmWeemSSZMWPGRsf57W9/m1deeSWHH354xo0b13r/kCFD8olPfKLDcZYvX55//dd/zTve8Y58+MMf3pSXAwAAAAAAAAAA9CH9OniVJPvvv/96xyZMmJD6+vrcd999aWpq6nCcu+++u91x1t03d+7cDT72q1/9al599dV87Wtfq2juAAAAAAAAAABA31bs7Ql0lyeeeCJJstNOO613rLa2NiNHjsyjjz6aRYsWZcyYMe2Os3DhwnbH2XbbbVNfX5/nnnsujY2Nqauraz12yy235Oqrr85Xv/rVjBgxYhNfzfrK5XIaGhqqPi7A5qy+vr7bxtZ3AdbXnX030XsBNsSaF6BnWfMC9DxrXtgyNDY2btbj9yfdveaF/q7fBq+WL1+eZO0lATdk0KBBSZLXXnttk8YZPHhwGhoasmzZstbg1YsvvpgvfOELede73pUPfvCDXZr/xqxevToPPfRQt4wNsLmaMGFCt42t7wKsrzv7bqL3AmyINS9Az7LmBeh51rxANazbYIWN6+41L/R3/TZ41ZvOPffcrFmzJl/96le77TkGDBiQXXfdtdvGB6AtfReg5+m9AD1L3wXoeXovQM/Sd6HvaGxs7NZw1OjRo9tcsQqgu/Tb4NXgwYOTJMuWLdvg8RUrViRJhg4duknj/P2OWNdcc03+7//+L9/85jez3XbbVT7xTioUCrb8A+hB+i5Az9N7AXqWvgvQ8/RegJ6l78KWo66uzvc70CNqensC3WXnnXdOkjz55JPrHVuzZk2efvrp1NbWZtSoUR2OM3r06HbHeeGFF9LQ0JDtt9++NS37wAMPJEk+97nPZezYsW3+S5Lnn3++zW0AAAAAAAAAAGDz0293vJo8eXIuueSSzJ49O6eddlqbY/fcc08aGhoyYcKElEqlDsd5+9vfnpkzZ2b27Nk57LDD2hybPXt2kmTSpEmt9+29995paGjY4FhXXXVV6urq1hsHAAAAAAAAAADYvPTr4NXo0aMzZ86czJo1KwceeGCSpKmpKRdccEGSZOrUqa31jY2NeeaZZ1JXV5cRI0a03j9lypT8+7//e2bOnJnp06dn3LhxSdZeevCSSy5Jkhx33HGt9e973/vyvve9b4NzuuqqqzJ06NB87Wtfq+6LBQAAAAAAAAAAelS/DV7V1tbm/PPPz0knnZRPfvKTed/73pdtt902s2bNyp///OccfPDBOeKII1rr77///kyfPj2TJk3K5Zdf3nr/kCFD8qUvfSmf/vSnc8IJJ+Swww7LoEGDcvPNN2fx4sWZNm1a9t133954iQAAAAAAAAAAQC/pt8GrJNlnn33yi1/8IhdeeGFmzZqVhoaGjBo1KmeddVZOOumkFAqFTo0zZcqUbLPNNrnkkktyww03pLm5OWPGjMnpp5+eY489tptfBQAAAAAAAAAA0Nf06+BVkuy22265+OKLN1o3efLkPPLII+0enzRpUiZNmrRJc+lofAAAAAAAAAAAYPNR09sTAAAAAAAAAAAA2NwIXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoVe3sCAPSspqamNDc3V33cYrGYUqlU9XEBAAAAAAAAoC8SvALYgjQ1NWXBggUpl8tVH7tQKGT8+PHCVwAAAAAAAABsEQSvALYgzc3NKZfLWdlQSrmlelebLdS0ZGD92p20BK8AAAAAAAAA2BIIXgFsgcotNWmpYvCqeiMBAAAAAAAAwObBe+UAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUCHBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFSo2NsTANbX1NSU5ubmqo5ZLBZTKpWqOiYAAAAAAAAAwJZK8Ar6mKampixYsCDlcrmq4xYKhYwfP174CgAAAAAAAACgCjYpeNXS0pJZs2blvvvuy9KlS7Pnnnvm2GOPTZK8/PLLefXVV/PmN785tbW1VZksbAmam5tTLpfzWMvKNKY64au6FDKmZmCam5sFrwAAAAAAAAAAqqDLwas//elP+Zd/+ZcsWrQo5XI5hUIhq1evbg1e3XXXXTnrrLNy0UUX5aCDDqrahCvx8MMP56KLLsq8efPS2NiYUaNG5eijj85JJ52UYrHzL33evHm55JJLcv/992f16tXZZZdd8uEPfzgf/OAH16u95557ctttt2XOnDlZvHhxli9fnuHDh+cd73hHTjvttOy0007VfIn0Y40ppyEtVRqtpkrjAAAAAAAAAACQdDGNsWjRopxyyil56qmn8u53vzuf/exn17ss2sEHH5wBAwbk1ltvrcpEKzV//vwcd9xxuf322/Oud70r06ZNS6FQyLe//e2ceeaZnb6M20033ZTp06fn3nvvzZQpUzJ16tS88sorOffcc/O1r31tvfp//ud/zk9+8pOUSqUcccQRmTZtWoYPH56rrroq73//+3PvvfdW+6UCAAAAAAAAAAA9rEs7Xn3ve9/LsmXL8qUvfSnHHXdckuRb3/pWm5qBAwdm3LhxWbBgwabPskJr1qzJ2WefnZUrV+YHP/hBDjzwwCTJmWeemZNPPjm33nprrrvuuhx55JEdjrNs2bKcd955KRaL+fnPf55x48YlST75yU/m2GOPzWWXXZYpU6ZkwoQJrY/5yEc+kqOOOirbbbddm7EuueSSfPe73815552X6667rsqvGAAAAAAAAAAA6Eld2vHqrrvuylve8pbW0FV7RowYkSVLlnRpYptizpw5eeKJJzJ58uTW0FWSlEqlnHnmmUmSGTNmbHSc3/72t3nllVdy+OGHt4aukmTIkCH5xCc+scFxTjvttPVCV0nysY99LAMHDsyjjz6apUuXdul1AQAAAAAAAAAAfUOXglcvvvhixowZs9G6NWvWpLGxsStPsUnmzJmTJNl///3XOzZhwoTU19fnvvvuS1NTU4fj3H333e2Os+6+uXPndmpOhUIhtbW1SdL6fwAAAAAAAAAAYPPUpUsNDh06NC+88MJG655++ulss802XXmKTfLEE08kSXbaaaf1jtXW1mbkyJF59NFHs2jRog4DZAsXLmx3nG233Tb19fV57rnn0tjYmLq6ug7n9Nvf/jYrVqzIXnvtlaFDh1bwajasXC6noaFhk8eh7+nOsGJvBCHpW7r7a6C3v8bq6+u7bWx9F2B93dl3E70XYEOseQF6ljUvQM+z5oUtQ39/z2pz0t1rXujvuhS8Gj9+fO6+++4sWrQoo0aN2mDNww8/nIceeihTpkzZpAl2xfLly5OsvSTghgwaNChJ8tprr23SOIMHD05DQ0OWLVvWYfBq0aJF+cpXvpLa2tp87nOf2+j8O2P16tV56KGHqjIWW451YULoLr39NTZhwoRuG1vfBVhfd/bdRO8F2BBrXoCeZc0L0POseYFq6O33rDYn3b3mhf6uS8Gr448/Pr/73e9y5pln5oILLlgvfPX888/n7LPPTpJ8+MMf3vRZbsZeeumlfOxjH8vLL7+cc889N/vss09Vxh0wYEB23XXXqoxF39LY2NhtC4HRo0dvdHc2+rfu/PpK+vfXmL4L0PP0XoCepe8C9Dy9F6Bn6bvQd3jPCugvuhS8eve7352pU6dmxowZmTJlSsaNG5ckmTNnTk488cTcf//9aWpqyoknnphJkyZVdcKdMXjw4CTJsmXLNnh8xYoVSbLRS/5tbJyN7Yj10ksv5SMf+UieeOKJnH322Zk2bdrGJ99JhULBln9UrK6uztcN3ao/f43puwA9T+8F6Fn6LkDP03sBepa+C1uO/vyeFdC31HT1gV/84hfzhS98IW984xuzYMGCJMkzzzyTP/zhD6mrq8vnP//5nHvuuVWbaCV23nnnJMmTTz653rE1a9bk6aefTm1tbbuXSVxn9OjR7Y7zwgsvpKGhIdtvv/0Gk7JLlizJtGnT8pe//CXnnXdePvKRj3ThlQAAAAAAAAAAAH1Rl3a8WueEE07Ihz/84Tz00ENZtGhRWlpasv3222fPPfdMsbhJQ2+SyZMn55JLLsns2bNz2mmntTl2zz33pKGhIRMmTEipVOpwnLe//e2ZOXNmZs+encMOO6zNsdmzZyfJBnf0eu655/KRj3wkTz75ZL70pS/luOOO28RXBAAAAAAAAAAA9CVd3vGqdYCamuy+++6ZMmVK3ve+92Wfffbp1dBVsjZ4NXr06MyZMyezZs1qvb+pqSkXXHBBkmTq1Kmt9zc2Nuaxxx7LM88802acKVOmZOutt87MmTPz0EMPtd6/bNmyXHLJJUmyXqhq8eLFOeGEE/LUU0/l61//utAVAAAAAAAAAAD0Q11KSB100EGZMmVKzjrrrA7r/uM//iM33nhjbr311i5Nrqtqa2tz/vnn56STTsonP/nJvO9978u2226bWbNm5c9//nMOPvjgHHHEEa31999/f6ZPn55Jkybl8ssvb71/yJAh+dKXvpRPf/rTOeGEE3LYYYdl0KBBufnmm7N48eJMmzYt++67b5vnnjZtWhYvXpzdd989ixcvzoUXXrje/I4++uiMHDmy+z4AAAAAAAAAAPRZTU1NaW5uruqYxWJxo1d9AqC6uhS8Wrx4cV5++eWN1i1dujSLFy/uylNssn322Se/+MUvcuGFF2bWrFlpaGjIqFGjctZZZ+Wkk05KoVDo1DhTpkzJNttsk0suuSQ33HBDmpubM2bMmJx++uk59thj16tf93ofeOCBPPDAAxscc9KkSYJXAAAAAAAAAFugpqamLFiwIOVyuarjFgqFjB8/XvgKoAd16zUBV65cmdra2u58ig7ttttuufjiizdaN3ny5DzyyCPtHp80aVImTZrUqefsaBwAAAAAAAAAtmzNzc0pl8tZ2VBKuaWmKmMWaloysH7tLlqCVwA9p9uCV8uWLcv8+fOz7bbbdtdTAAAAAAAAAMBmqdxSk5YqBa+qMwoAlep08Oqggw5qc/umm27K3LlzN1i7Zs2avPjii1mzZs0GL8cHAAAAAAAAAACwOet08Grx4sWt/y4UCmloaEhDQ0O79QMGDMjBBx+cz3zmM5s2QwAAAAAAAAAAgD6m08Gr2267LUlSLpdz8MEH573vfW8++9nPbrB2wIAB2WabbVIsdtuVDAEAAAAAAAAAAHpNp5NRO+64Y+u/zzjjjIwbN67NfQAAAAAAAAAAAFuKLm1JdcYZZ1R7HgAAAAAAAAAAAJuNmt6eAAAAAAAAAAAAwOamSzterXPDDTfk5ptvzsKFC7N8+fKUy+X1agqFQm699dZNeRoAAAAAAAAAAIA+pUvBqzVr1uSMM87I7bffvsGwVbI2cFUul1MoFDZpggAAAAAAAAAAAH1Nly41+POf/zz/93//l3HjxuXHP/5xDjnkkBQKhfz2t7/N97///RxxxBFJko9//ON2uwIAAAAAAAAAAPqdLu14dd1112XgwIH50Y9+lG222SbXXXddkmT06NEZPXp0DjzwwOy///75/Oc/n3333Tc77rhjVScNAAAAAAAAAADQm7q049Xjjz+evffeO9tss02b+1taWlr/fdRRR2Xs2LH50Y9+tGkzBAAAAAAAAAAA6GO6FLxqbm5uE7oaOHBgkmTZsmVt6saMGZOHHnpoE6YHAAAAAAAAAADQ93QpeDV8+PC88MILbW4nyaOPPtqm7tlnn22zCxYAAAAAAAAAAEB/0KXg1a677ponnnii9fa+++6bcrmc//qv/8qKFSuSJNdff33mz5+fXXbZpTozBQAAAAAAAAAA6COKXXnQgQcemP/7v//L3LlzM2nSpEycODF77rln5s2bl8mTJ2fQoEF57bXXUigUcvLJJ1d7zgAAAAAAAAAAAL2qS8GrI444Im95y1sycuTI1vv+3//7fznnnHNyxx135NVXX83QoUPz8Y9/PIceemjVJgsAAAAAAABAW01NTWlubq7qmMViMaVSqapjAkB/06Xg1aBBgzJhwoQ29w0bNizf//7309jYmGXLlmXYsGGpqenSlQwBAAAAAAAA6ISmpqYsWLAg5XK5quMWCoWMHz9e+AoAOtCl4FVH6urqUldX13p7/vz52Weffar9NAAAAAAAAABbvObm5pTL5axsKKXcUp2NMQo1LRlYv3YXLcErAGhf1YNX69xzzz25+OKLc/fdd+fBBx/srqcBAAAAAAAA2OKVW2rSUqXglesabb4aGxurPqbLTgK0r6Lg1apVq3LfffflpZdeyjbbbJO99torAwcObFNzzz335MILL8ycOXNSLpez1VZbVXXCAAAAAAAAAMDfFArlpFzOwoULqz92kvF77CF8BbABnQ5eXX/99fnyl7+c1157rfW+rbfeOl/5yldy8MEHZ+nSpfm3f/u33HLLLSmXyykWizn22GNz+umnd8vEAQAAAAAAAIAkhXJSKORND/8xAxqWV23Y1fWD89Jub3PZSYB2dCp4df/99+ess85KS0tLkrWBq8bGxixdujSf/vSn8/Of/zyf+cxnsmjRohQKhRx99NH55Cc/mR133LFbJw8AAAAAAAAArDWgYXlKy1/beCEAVdGp4NWll16alpaWHHrooTn77LOz7bbbJknuuuuunH322TnllFOyfPnyjBkzJv/xH/+R3XbbrVsnDQAAAAAAAAAA0JtqOlN07733Zvjw4fnmN7/ZGrpKkne+850599xzs3z58gwcODA//elPha4AAAAAAAAAAIB+r1PBqxdffDF77LHHBq/ZOmnSpCTJxIkT24SyAAAAAAAAAAAA+qtOBa+ampoydOjQDR5bd/+wYcOqNysAAAAAAAAAAIA+rFPBKwAAAAAAAAAAAP6m2NnCp556Ktdcc02Xjr///e+vcFoAAAAAAAAAAAB9V6eDV/Pnz8/8+fO7dFzwCgAAAAAAAAAA6E86FbyaOHFid88DAAAAAAAAAABgs9Gp4NXll1/e3fMAAAAAAAAAAADYbNT09gQAAAAAAAAAAAA2N4JXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUqEvBq+9///t56aWXqj0XAAAAAAAAAACAzUKXglff/e538+53vzv/8i//kj/84Q/VnhMAAAAAAAAAAECf1qXg1bRp01JXV5frr78+06ZNy+GHH56f/exnWb58ebXnBwAAAAAAAAAA0Od0KXh1zjnn5He/+12++tWvZvfdd89f/vKXfO1rX8sBBxyQL3zhC3nggQeqPU8AAAAAAAAAAIA+o0vBqyQZOHBgjj322Fx11VX51a9+lWOOOSZJ8stf/jLHHntsjj322Pz617/OqlWrqjZZAAAAAAAAAACAvqDLwavX23333fO1r30td9xxR84555zsuuuuWbBgQc4555wccMABOf/887No0aJqPBUAAAAAAAAAAECvq0rwap3Bgwdn1KhRGTFiRJKkXC7ntddey6WXXppDDz00X/nKV9LU1FTNpwQAAAAAAAAAAOhxxWoM8tJLL+WXv/xlfvGLX+TZZ59NuVzOW97ylpxwwgnZb7/9MnPmzFx22WW54oorUltbm7PPPrsaTwsAAAAAAAAAANArNil49fvf/z4zZszIbbfdljVr1qS2tjbvfe97c8IJJ2TixImtdaeffnqmTp2ao48+OjfccIPgFQAAAAAAAAAAsFnrUvDqJz/5Sf7nf/4nTz75ZMrlcoYNG5bjjjsuxx13XIYPH77Bx7zxjW/M5MmT85vf/GaTJgwAAAAAAAAAANDbuhS8+uY3v5kk2WeffXLiiSfmkEMOSbG48aH+4R/+Ifvuu29XnhIAAAAAAAAAAKDP6FLw6kMf+lCOP/747LbbbhU97qMf/Wg++tGPduUpAQAAAAAAAAAA+owuBa++/OUvV3seAAAAAAAAAAAAm42arjxo3LhxOfvsszdad+655+atb31rV54CAAAAAAAAAACgz+pS8KpcLqdcLne6FgAAAAAAAAAAoD/pUvCqsxoaGlIsdulqhgAAAAAAAAAAAH1Wt6SiWlpa8thjj+Xuu+/O9ttv3x1PAQAAAAAAAAAA0Gs6HbwaN25cm9vXXHNNrrnmmo0+7qijjqp4UgAAAAAAAAAAAH1Zp4NX5XK59d+FQqHN7fUGLRaz3Xbb5R//8R/zqU99apMmCAAAAAAAAAAA0Nd0Onj18MMPt/57t912y9FHH53zzz+/WyYFAAAAAAAAAADQl3U6ePV6559/ft785jdXey4AAAAAAAAAAACbhS4Fr44++uhqzwMAAAAAAAAAAGCzUdPbEwAAAAAAAAAAANjcdGrHq3HjxqVQKOT666/PzjvvnHHjxnX6CQqFQh588MEuTxAAAAAAAAAAAKCv6VTwqlwup1wut7ndWZXUAgAAAAAAAAAAbA46Fbx6+OGHO7wNAAAAAAAAAACwJanp7QkAAAAAAAAAAABsbroUvLr//vurMUXkcgAAQcZJREFUPQ8AAAAAAAAAAIDNRpeCVx/60Ifyvve9Lz/4wQ/y3HPPVXtOAAAAAAAAAAAAfVqXgle77LJLHn/88Xz3u9/Ne97znpxyyim59tpr09jYWO35AQAAAAAAAAAA9DldCl7dcMMN+eUvf5njjz8+b3jDG3LXXXfl85//fPbbb7/867/+a+6+++5qzxMAAAAAAAAAAKDPKHb1gXvssUf22GOP/Ou//mtmzZqVa6+9NrfffnuuvvrqXHPNNdlhhx1y1FFH5aijjsro0aOrOGUAAAAAAAAAAIDe1eXgVesAxWIOOuigHHTQQVm2bFmuv/76XHPNNbnvvvtyySWX5Pvf/34efPDBaswVAAAAAAAAAACgT+jSpQbbM2TIkEydOjUXX3xxTjjhhJTL5ZTL5Wo+BQAAAAAAAAAAQK/b5B2v1mlqasptt92Wa6+9NrNnz86aNWuSJDvttFO1ngIAAAAAAAAAAKBP2OTg1T333JNrr702v/3tb7Ns2bKUy+UMHTo0U6ZMydFHH5299967GvMEAAAAAAAAAADoM7oUvFq0aFGuvfba/OY3v8miRYtSLpdTLBbzrne9K+9///tz0EEHpVQqVXuuAAAAAAAAAAAAfUKXglf/+I//mEKhkHK5nLFjx+boo4/OEUcckTe96U3Vnh8AAAAAAAAAAECf06Xg1Zve9KYcccQRef/735/ddtut2nMCAAAAAAAAAADo07oUvPrd736X2traas8FAAAAAAAAAABgs9Cl4NXmFLp6+OGHc9FFF2XevHlpbGzMqFGjcvTRR+ekk05Ksdj5lz9v3rxccskluf/++7N69erssssu+fCHP5wPfvCDG6xvbm7OT3/601x99dV56qmnUl9fn4kTJ+af/umfMnbs2Gq9PAAAAAAAAAAAoBd0Knk0b968JMmee+6ZrbbaqvV2Z02cOLHymVXB/Pnzc/LJJ2fNmjU59NBDM3z48MyaNSvf/va3c++99+aiiy5KoVDY6Dg33XRTPvWpT6Wuri6HHXZYBg0alJtvvjnnnntuHn300Zxzzjlt6svlcs4888zceuutectb3pLp06dnyZIlufHGG3PHHXfkJz/5SfbZZ5/uetkAAABsBpqamtLc3Fz1cYvFYkqlUtXHBQAAYMvT2NhY9TH93gpAf9Kp4NW0adNSKBRyww03ZOedd2693RmFQiEPPvjgJk2yK9asWZOzzz47K1euzA9+8IMceOCBSZIzzzwzJ598cm699dZcd911OfLIIzscZ9myZTnvvPNSLBbz85//POPGjUuSfPKTn8yxxx6byy67LFOmTMmECRNaH/Ob3/wmt956ayZOnJgf//jHrQuHww8/PKeddlrOOeeczJw5c7PaOQwAAIDqaWpqyoI//Snlbhi7kGT8Hns4iQ0AAECXFQrlpFzOwoULqz92/N4KQP/RqeDVuh2r6urq2tzuy+bMmZMnnngikydPbg1dJUmpVMqZZ56ZadOmZcaMGRsNXv32t7/NK6+8kmOOOaY1dJUkQ4YMySc+8Yl8/vOfz4wZM9oEr2bMmJFkbcjr9QuGAw88MJMmTcrcuXMzd+7cvOMd76jWywUAAKCbdMfOVI2NjSknedPDf8yAhuVVG3d1/eC8tNvb0tzc7AQ2AAAAXVcoJ4WC31sBYCM6Fby6/PLLO7zdF82ZMydJsv/++693bMKECamvr899992XpqamDn+o33333e2Os+6+uXPntt63atWq/PGPf0x9ff0GLyd4wAEHZO7cuZkzZ84mBa/K5XKampo2eKympibF4t8+te3VJWt3JBswYECXalevXp1yecN/n91dtUnafL4qqW1ubk5LS0tVagcMGNC661u1a9cpt7Sk3LKm3drU1rSOW25pSVra/ziUa/+2Q92aNWuyZk374xaLxdTU1HRrbUtLS4dvXNXW1rbuCNcXasvlclavXl2V2td/f3ZXbdL+93JTU9N6n6c1azp+E7G29m/jtldbLresN25v9Iju/CVN3628dnPpu+tqN9bHKqntiV6q724efbfS2s2tR3T3ybH+2nubmprWhm6q3HvXfd9vyb23ubk5zc3NVe2n5XI5TzzxRMrlclpaWjp8bTU1NW16b2dqBzQsT3HZq+lg5Z+aJLV//Ti0lMsd177ua6XavXfNmjVpbm6uaj8tlUqpr6/vVK3eu5Y1rzXvptRa81rzWvNWXmvNq/duaq3eq/fqvZXXWvN2rXbt929zWlpqNljfmXP9G6otrFiWwvLX2q0d8LqrJDWXyx3u7Pz6N6abm5s7/Lj19767TktLS9asaf+1FWpqUlP4a98tt6x9T7Dd2r8d2+j5g3T+XMOabjrX8PqPUblcTjr4OKRQSKG2plO15ULWvsBOzEHfXUsIEjZNp4JXm6MnnngiSbLTTjutd6y2tjYjR47Mo48+mkWLFmXMmDHtjrNu+8wNjbPtttumvr4+zz33XBobG1NXV5ennnoqa9asyciRIzd4KcF142zqtpyvvPJKzj///A0e22WXXfKBD3yg9fZ3v/vddn8AjhgxIsccc0zr7R/96EdZuXLlBmuHDx+eD33oQ0nWLgh+/OMf57XXNrzQetOb3pRTTjml9faPf/zjvPTSSxusHTp0aD7+8Y+33r788svz3HPPbbC2rq4uZ5xxRuvtGTNmZNGiRRusHTBgQD71qU+13v7Vr36Vxx9/fIO1SXLWWWe1/vvaa6/No48+2m7t63czu+GGG/LAAw+0W/vJT36y9Y2EW265Jffdd1+7taeddlrruMseeTwvP/Fku7UjDpic0pDBSZKlf1mYV//yRLu1o985MdmmPo2NjZk7d25mzZrVbu1xxx2XN7/5zUmS+fPn57bbbmu39phjjmn9/lmwYEFuvPHGdmuPPPLIjB07NknyyCOP5De/+U27tYceemjGjx+fJHnsscfy61//ut3agw46qDXk+NRTT+V//ud/2q1dt+tckjz77LP52c9+1m7tO9/5zuy3335JkhdffDE/+clP2q2dOHFi3v3udydJXn311fzgBz9ot3avvfbKP/7jPyZJGhoacvHFF7dbO27cuBx00EFJ1i6Gvv/977dbO2bMmBx66KGtty+66KJ2a4cPH549x++/bs2ZWbOvTUs7Ib+t3zAsE/Z+d+vt2b+fmdWrN7w4fMMb3pCRI0e2Xu/90ksvzbJlyzZYu8022+T4449vvX3FFVfk5Zdf3mDtuh0G1+moR/zbv/3bBu+vhkr67n/+53+2u5AfNWpUpk6d2nr7oosuav2Y/b3tt98+06ZNa719ySWXVO1j+pGPfKT19i9+8YssWbJkg7UDBw7Mqaee2nr717/+dZ555pkN1haLxTafq+uuuy5PPtl+H3t9P7/xxhvz2GOPtVv78Y9/PAMGDEixWMwtt9xS1b77hje8IUly++23Z968ee3WnnzyyRk2bFiS5M4778xdd93Vbu2JJ56YHXbYIatXr87cuXM7rH3/+9+fkSNHJknuv//+/O53v2u39vDDD8/o0aOTJA899FCHPXrKlCnZddddkyR/+ctf8tvf/rbd2oMOOqh1Z8+FCxdm5syZ7da+613vyp577pkkefrpp3PNNde0W/vOd74zkyZNyoABA6red/fbb780Nzfntddey2WXXdZu7R577NG6+2ljY2P++7//u93a3XbbLVOmTMmAAQPS1NSUCy64oN3af/iHf8hRRx3Vevvb3/52u7U91SO+//3v9/jarDv7btL7vXf16tX57//+76r23ubm5ix+enF+d8fv8uqrr26wtlQq5ZBDDmm9fdddd7U7bm1tbZs1wP3335+nnnpqg7VJ/+69U6dOzYoVK1Iul/PYY4/loYcearf27W9/e+u4CxcuzIIFC9qtnThxYrbbbrs0rSpm8dOL8sBD97Rbu+f4Sdluu7U9/fnnn879C+a2Wzt+970zeucds7p+cJ5auTo3v9z+Xw+/8w11eeuggUmSZ1atzg0vtV87oVTODlnb86rZeydMmJAdRoxIyuU0NDTkf//3f9ut3WmnnbLHHnskWfvHSbfccku7tSNHjsyxxx6r9/aR3tvbfTfZvNa85XI5M2fOtObtpjVvuVzOww8/XNU172677ZZCoWDNa83bZ/pu0vu9tzvWvMnaHvnLX/5S7031e++wYcPS3Nyc+fPnV7X37rTTTikUClU/37A59d4JEya0/sF8NXvvuHHjcvjhhyeJ3tsHem9v992ke9a8q1atyl133dXuuYYBA0p5135/uwrQvX/8XV559cUN1tbU1Ob/966jUyisDbbc8urKLG5oP+Ry6og3tv77tpeX54mV7YdcPrL91kn92ve2brzxxjz88MPt1vaVvttda94ddtghSfL8C0/mwQ7ONYx/69uz3fC1476w5OksePDudmt3H7d3dh68+Zxr2HvvvbPjjjumLoWsbmzK4tvb//gOefOOedP43ZIka5qasui2O9qtfcOOOyR7T0hjY6O+2wf6LmwJuhS8mj59eg444IB87GMf67Duv//7vzNr1qwOF6fdZfnytT8chgwZssHjgwYNSpJ2m1Znxxk8eHAaGhqybNmy1NXVtS6UBg8e3G59knYXVNWwfPnyNm8ydPSXQitXrmwTAusoLb5q1arW2o2lg1etWtVmDqtWrWq3dvXq1W1q2/uhk6xNPr++dsWKFe3WtrS0tKld97lsz+trN/b5eeSRR1oTze0tYtd59NFHs9VWWyVJli5d2mHtX/7yl9TX16dcLmfrQm02vJRe6y01AzOkZu3lPx8pFNPRLEbWbJXyX6/D3d7JjnWefPLJ1o/r888/32HtokWLWhPa7Z0YWefpp59u/fraWO0zzzzTGlzc2Byef/751s/diy9u+JeEdZYsWdJa+8orr3RY+8ILL7TWbuzr4aWXXmqtbWho6LB26dKlrbUdfV+se95133Mbu7RNQ0NDpwOd5XIysP5v4anX/THKempqW1I3eGWnapO1gbZ1OppzU1NTm/l2lPRvbm7udI/oLX/fdzvqpStWrGhT29FfvTQ2NraprebH9PW1HX0ttrS0tKltL5ybpLXPrLOxz9Xrazf2vfPkk092a99N0u4vJ+s8/vjjeeGFF5Kk9f/tWbhwYWuf2dgcnnvuudbPbXsnUdZ5fU/sTM9b9zHbWO9/8cUXWz8fG+u7L7/8cmvtxuawdOnS/OUvf0lS/b67btyNfe289tprrfPdWN9dvnx567gb67vLli3rMNTx9+P2RI/ojbVZb+qZj2u5W3pvB8vzTVMud9inky723nJ5s+i9Tz/9dLbe+g1JNrJg6YJyOSlt1ZxiqePeUCw1Z6u6ptZ/d6S22JKUy3lpt7dl6fPPJy+3f1L4tVFj8txfg7cvv/hi8lL7J1kbhq8NR73+Z1F7Kum9S5cuzfbbb9/6V8HVpPduHr3XmnetNmvecrl71rybSd/9W58pd8uat1yu/pr3yYULk0Kh+mveP/85KRSqvub985//nEKhUPU177px9d2+3XeTzX/Nq/d2V+9dmqRQ9d5bXntFsS269y5durR1DtXsva/vp3pv3+69m/uatyOFQtqc66+p7WDXpNfXlstZPXho0tB+n35un/1a/73ynnuS171P8Pee3+vtrX13Y+/b9Z2++0q6c807YCPnD0oDm1o/H6XX2v96SJJiafM61/Dqq69mxIgRGVMzMA01LVncQe02hWLG//V90VU1NdnwthxrDSnUtq4f9N2+3XehvyiUO0rltGO33XbL0Ucf3W4ifJ1zzz03v/rVrzrdrKrplFNOyZ133pmf/OQneec737ne8alTp+bee+/NjBkzsvfee7c7znvf+94sXLgwN9988wZ3vTrggAOyZMmS3HHHHRk+fHjmz5+fD3/4w9lnn31y5ZVXrld/55135pRTTsn+++/f4V9AdORPf/pTyuVy665Ef+/12xw2NjbmL3/5S55oWZXGDW3uWUhqXrczV0tzBxtJ/rW2LoWMqRmYHXfcMQMHDtxwqS2oN6l29erVWbVqVYe1xWKxzVaoHdXW1tamVCplwIABtqDeTLagXrlyZZ566qm8+c0rUyq1pFwup7m5o1+ECikW/7Z98OrVG/5cNDXV5NlnB2XkyJGtv7B0NN+14/4to9te7apVq/L8889n+J8XtF7rvbml/S2FC0mKNa/bfrid2tX1g7J07J4ZM2ZM6urqWufQ3vf91ltv3e5r2RSV9N2k+7aXbWho6PDr9u97aUdeX7vukkF9uXZdz1v3/81l6//O9PPa2to2vbQ7atduV93+fGtqatr0x2rWbrXVVhkwYEDV++668db2x/bHff18O1O7br62oO5cbXf13aT3e+/q1avz2GOPddifCoVCm11u16xZ0+na7bfffoM75K5TaT9dtWpVnn322Wz94H2pbWj/xOWA1//8LZc7DIEVC0nzoCF5abe3ZdSoUR1uOd5Xeu+6S+FVu58WCoUUCoWq996amprWn2tbau8dMGBA6zpP7+3d3tvbfTdZew7jscceyw47rEiptOHvtQED/tY72/u95+9rly8v5rnnSlnZMCDlTl12ZU3SwQVSamuLqaltzlZ1zVt83133R3rbb78sxWL7tbW1NampWTduS1paOvr41qShYUBeeKEuDcuLaWeD5iRJodD2Eq/lcgc9utiSukEtedPDf0ztimVZ08HnoraQ1Lz+sisd1K4ZNDivjNsro0ePzlZbbVW1vtvU1JRFixblsZaVaSi3pNzR5Wf+7rIrHdXWFWrylgH1GT16dAYOHKjvdqK2P695Gxsbs3Dhwgwf/lq7fTepvPcuX17MCy/UZcWy2pRb2g9t672V165evTpPPfVUdtxxRWprmzfaTzvbe1etKmbJksEpFDp/yeyk87WbQ+9duXJlFi1alCfSlMaUN9pPO9t761LILrUDW89vWvNa83bXmrepqSZPPTUw2223Xeu5//VrKz93Wy6XOzzfUem4m+N53nVr3je+sSG1tZ1b86793b2jHl3ImjXFvPji2s/Z67/u1q91ruHv5+s87+bTd2FL0a2XGmxqaurwzYTutLGdpdbt6DN06NBNGufvd8Ra9//2Utob20GrswqFQqcbYLFYzKqW1VmZ9hYkr7u/uLG/Xm7JuoviDh06tDU9DlRXQ0PDXwNzLamr6/gXq7XKyeuuwP3X967W09i49k3frbfeuqrfvw0NDXnxxRczoGF5Sn+91nslV4Nur7apppDXamtTV1fX6/2mkr5byVy7qxboWb7vu0dv997x48dv9K/iuqJYLHb4hk5XNDQ05Nlnn83AlStSaujc7rqdmcG6E5GDBw/e4r8e6Xv03urr7b6brD3xPmhQod3faTrze8/f165atfYEfU2hlJbChoNXr38Pp9BOzetrC39942NL77vr3gCqq9vY56P9N8k2VLt69dr6Qoqd+nz8dTYd7tJcKDQnaVr7e+uK6u1E3/TXN9eq/Xvrup1WGlNOY6HcyXN2+etfOrVfW5Ouz1ff7R59ofd23HeTSnvvqlVrv29rCgPa7buJ3tsVr9+Fqba2Jp19+2VjteVyIYVCMnr06NZQfDWsC/dtDr23oaEhNTU1aWwppyEtG+2na22899akJrU1XT+/qfdWX1/ou92x5l037rbbbrtFf367Q6lUSk1NIUuXVv/jWlNTyPDhw6t+noiu03eBrui24FVLS0seeOCBXktH7rzzzkmywWu9r1mzJk8//XRqa2szatSoDscZPXp0FixYkCeffDLjx49vc+yFF15IQ0NDtt9++9ZfRt785jentrY2Tz/9dNasWbNe8GzdfEb/detGAACgbyqVSk58AQAAfcbaHbYLWbx4UNXHrqkpZMiQIX4Hgh7S1NRx4LS3x+NvSqVSdt998/njPAB6XqeDV9OnT29z+4477ljvvnXWrFmTJ598Mi+99FIOPfTQTZthF02ePDmXXHJJZs+endNOO63NsXvuuScNDQ2ZMGHCRn+Yvf3tb8/MmTMze/bsHHbYYW2OzZ49O0kyadKk1vu22mqrvO1tb8v8+fMzf/78TJw4sc1j7rjjjtb5AQAAVNPq+sF9ejwAALYchZqWVDMGUChUsnte/+TNf9j8dXeAsqNL1tF1/jgPgI50+qfv3LlzW/9dKBTy4osv5sUXX+zwMW9961vzmc98puuz2wSTJ0/O6NGjM2fOnMyaNSsHHnhgkrWXP7zggguSJFOnTm2tb2xszDPPPJO6urqMGDGi9f4pU6bk3//93zNz5sxMnz4948aNS7L20oOXXHJJkuS4445r89xTp07N/Pnzc8EFF+THP/5x6w/iWbNmZe7cudl5553bhLUAAAA2RbFYTCHJS7u9repjF/46PgAAdEZtbTnlcjKwvqm3p9IvbY5v/vsDEfgbAUoA6H86ffb8sssuS5KUy+V85CMfyQEHHJCPfexjG6wdMGBAtttuuzYBpp5WW1ub888/PyeddFI++clP5n3ve1+23XbbzJo1K3/+859z8MEH54gjjmitv//++zN9+vRMmjQpl19+eev9Q4YMyZe+9KV8+tOfzgknnJDDDjssgwYNys0335zFixdn2rRp2Xfffds895FHHpmbbropt912W4455pgceOCBeeGFF3LDDTdkq622yte//vX1LkEIAADQVaVSKeP32MOJWwAAel2xWE6hkIwePTp1dXVVG7exsTELFy6s2nh0P38gAhu2OQYoAYD2dXpV+vodmo4++uhMmDChz+/atM8+++QXv/hFLrzwwsyaNSsNDQ0ZNWpUzjrrrJx00kkpFAqdGmfKlCnZZpttcskll+SGG25Ic3NzxowZk9NPPz3HHnvsevWFQiEXXHBBLr300vz617/OZZddlvr6+hx44IH553/+54wdO7baLxUAANjCOXELQH9TzcuUuUQZ9Ly6urrU19f39jToRf5ABACALUGX/hzg/PPPr/Y8us1uu+2Wiy++eKN1kydPziOPPNLu8UmTJlUUNBswYEBOPfXUnHrqqZ1+DAAAAABs6VymDKD/8AciAAD0d/ZhBQAAAAD6jO64TJlLlAEAAADdoVPBq+nTp6dQKOSb3/xmtt9++0yfPr3TT1AoFHLppZd2eYIAAAAAwJbHZcoAAACAvq5Twau5c+emUCiksbGx9XZnFQqFrs0MAAAAAAAAAACgj+pU8Oqyyy5LkowYMaLNbQAAAABgy9bUVNOnxwM65nsYAACg6zoVvJo0aVKHtwEAAACALUuxWExNTSGLFw+q+tg1NYUUi506dQl0ke9hAACATec3HwAAAAD6vUJNS6q1B0uh0FKlkTZvpVIpu+8+Ps3NzVUfu1gsplQqVX1c4G98DwMAAGy6LgWvmpqasmzZsgwePDhbbbVV6/3Lly/PD3/4wzzyyCMZMWJEPvrRj2bHHXes2mQBAAAAoBK1teWUy8nA+qbenkq/VCqVhCtgM+Z7GAAAYNN0KXh18cUX5wc/+EGuvPLK7LXXXkmSNWvW5Pjjj8+f//znlMvlJMktt9ySa6+9Nttss03VJgwAAAAAnVUsllMoJKNHj05dXV1VxmxsbMzChQurMhYAAAAAm68uBa9+//vfZ4cddmgNXSXJTTfdlEcffTTjx4/PSSedlNtvvz0zZ87MFVdckTPOOKNa8wUAAACAitXV1aW+vr63pwEAAABAP1LTlQc988wzGT16dJv7brvtthQKhXzzm9/M4Ycfnn//93/PDjvskNtuu60a8wQAAAAAAAAAAOgzuhS8evXVV9e7fOD8+fMzatSojBkzpvW+8ePH55lnntm0GQIAAAAAAAAAAPQxXQpeveENb8grr7zSevu5557Ls88+mwkTJrSpK5VKWbVq1SZNEAAAAAAAAAAAoK/pUvBq1KhRueeee1rDV9ddd10KhUL222+/NnVLlizJm970pk2eJAAAAAAAAAAAQF/SpeDVcccdl8bGxnzgAx/IGWeckQsuuCBDhw7Nu9/97taapqamLFiwILvssku15goAAAAAAAAAANAnFLvyoCOPPDJ33XVXfvOb32Tx4sWpr6/PV7/61QwePLi15rbbbktjY2MmTpxYtckCAAAAAHTV6vrBGy/qxfEAAACAzUuXglc1NTX51re+lU996lN56aWXsssuu2TQoEFtakaPHp2LLrooe+21VzXmCQAAAADQJcViMYUkL+32tqqPXfjr+AAAAMCWZ5POCIwYMSIjRozY4LFx48Zl3LhxmzI8AAAAAFuYpqaaPj0em6dSqZTxe+yR5ubmqo9dLBZTKpWqPi6wYXauAwAA+pJN/lOspqamPPDAA3n++eeTJNttt1123313JxsAAAAA6LRisZiamkIWLx608eIK1dQU7EhESqWSc5awGbNzHQAA0Bd1+TeJpqamXHjhhbniiivS0NDQ5lh9fX1OOOGEnHHGGU5mAAAAALBRpVIpu+8+3o5EAGyQnesAAIC+qEvBq+bm5nzsYx/L3LlzUy6XM3LkyIwaNSpJsmjRojz99NP54Q9/mPvvvz8/+tGP/KUIAAAAABtlRyIAOuLnBAAA0Nd0KRF15ZVXZs6cOXnLW96SL3zhC5k0aVKb43Pnzs1XvvKVzJkzJzNmzMiJJ55YlckCAAAAAAAAAAD0BTVdedC1116bQYMG5Sc/+cl6oaskmTRpUn7yk5+kvr4+11xzzabOEQAAAAAAAAAAoE/pUvDq8ccfz9vf/vYMGzas3Zphw4bl7W9/ex5//PEuTw4AAAAAAAAAAKAv6lLwqqWlJcXixq9SWCwW09LS0pWnAAAAAAAAAAAA6LO6FLwaNWpU5s2bl4aGhnZrGhoaMm/evIwaNarLkwMAAAAAAAAAAOiLuhS8eu9735uXX345Z555Zp599tn1jj/zzDM588wzs3Tp0rz3ve/d5EkCAAAAAAAAAAD0JRu/XuAGnHzyybnxxhtzxx135JBDDsnEiRMzcuTIJMmiRYsyb968NDc3Z9ddd80pp5xS1QkDAAAAAAAAAAD0ti4FrwYNGpTLL788X/ziF3PLLbfkrrvuanO8UCjkkEMOyRe/+MXU19dXZaIAAAAAAAAAAAB9RZeCV0myzTbb5L/+67/yzDPP5A9/+EOef/75JMl2222XfffdNyNGjKjaJAEAAAAAAAAAAPqSioNXL7zwQp555pmUSqWMGTMmI0aMyJFHHtkdcwMAAAAAAAAAAOiTOh28+vOf/5wvfOEL+eMf/9h6X6lUyrHHHpvPfe5zKZVK3TJBAAAAAAAAAACAvqZTwavnn38+J554Yl577bWUy+XW+1etWpUrrrgiL774Yi644IJumyQAAAAAAAAAAEBfUtOZoh/96Ed59dVXM27cuFx++eW55557MmvWrJx33nmpr6/PzTffnAcffLC75woAAAAAAAAAANAndGrHq9mzZ2fo0KH50Y9+lG222SZJMmjQoBx//PGpra3Nv/3bv2X27Nl561vf2q2TBQAAAAAAAAAA6As6tePVs88+m7e97W2toavXO/jgg1trAAAAAAAAAAAAtgSdCl6tXLkyw4YN2+CxN73pTUmSVatWVW9WAAAAAAAAAAAAfVingledUS6XqzUUAAAAAAAAAABAn1bsbOGLL76YefPmden4xIkTK58ZAAAAAAAAAABAH9Xp4NXs2bMze/bsDR4rFArtHi8UCnnwwQe7PkMAAAAAAAAAAIA+plPBqxEjRnT3PAAAAAAAAAAAADYbnQpe/e///m93zwMAAAAAAAAAAGCzUdPbEwAAAAAAAAAAANjcCF4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFSr29gQAAAAAAACgt9WlkGruWbB2PAAA+jPBKwAAAAAAALZYxWIxhUIhY2oGVn3sQqGQYtHbcQAA/ZWVHgAAAAAAAFusUqmU8ePHp7m5uepjF4vFlEqlqo8LAEDfIHgFAAAAAADAFq1UKglIAQBQsepdqBoAAAAAAAAAAGALIXgFAAAAAAAAAABQIcErAAAAAAAAAACAChV7ewIAtK+pqbr52GqPBwAAAAAAAABbKsErgD6oWCympqaQxYsHVX3smppCikXtHwAAAAAAAAA2hXfeAfqgUqmU3Xcfn+bm5qqPXSwWUyqVqj4uAAAAAAAAAGxJBK8A+qhSqSQgBQAAAAAAAAB9VE1vTwAAAAAAAAAAAGBzI3gFAAAAAAAAAABQIZcaBKBqVtcP7tPjAQAAAAAAAEC1CF4BsMmKxWIKSV7a7W1VH7vw1/EBAAAAAAAAoC/xTjYAm6xUKmX8Hnukubm56mMXi8WUSqWqjwsAAAAAAAAAm0LwCoCqKJVKAlIAAAAAAAAAbDFqensCAAAAAAAAAAAAmxvBKwAAAAAAAAAAgAoJXgEAAAAAAAAAAFRI8AoAAAAAAAAAAKBCglcAAAAAAAAAAAAVErwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKlTs7QkAAAAAwOZodf3gPj0eAAAAAN1L8AoAAAAAKlAsFlNI8tJub6v62IW/jg8AAABA3+csDgAAAABUoFQqZfwee6S5ubnqYxeLxZRKpaqPCwAAAED1CV4BAAAAQIVKpZKAFAAAAMAWrqa3JwAAAAAAAAAAALC5EbwCAAAAAAAAAACokOAVAAAAAAAAAABAhQSvAAAAAAAAAAAAKiR4BQAAAAAAAAAAUKFib0+gu5TL5Vx11VW58sor8/jjj2fAgAHZc88984lPfCITJ06saKzm5ub89Kc/zdVXX52nnnoq9fX1mThxYv7pn/4pY8eObVPb0NCQW2+9NbNmzcoDDzyQ5557LoVCITvvvHMOP/zwnHjiiSmVStV8qQAAAAAAAAAAQA/rtztefe1rX8u5556bV155JVOnTs2UKVNy7733Zvr06bnppps6PU65XM6ZZ56Zb3/72ykUCpk+fXre9a535fbbb8+HPvShzJ8/v039H/7wh5x11lm544478g//8A858cQTc8QRR2TJkiX55je/menTp2fVqlXVfrkAAAAAAAAAAEAP6pc7Xv3hD3/I5ZdfntGjR+eqq67KkCFDkiTHH398PvShD+W8887Lfvvtl8GDB290rN/85je59dZbM3HixPz4xz9u3a3q8MMPz2mnnZZzzjknM2fOTG1tbZJk2223zbe+9a0ceuihbXa2+uxnP5vp06fn3nvvzc9//vOccsop3fDKAQAAAAAAAACAntAvd7yaMWNGkuT0009vDV0lybhx43L44YfnlVdeyY033ljRWGeeeWabINWBBx6YSZMm5fHHH8/cuXPbPMdRRx213uUEBw8enJNPPjlJ2tQDAAAAAAAAAACbn34ZvJozZ06SZL/99lvv2P7775+kc+GnVatW5Y9//GPq6+uzzz77rHf8gAMOaPN8G1Msrt1gbN3uWAAAAAAAAAAAwOap311qsKGhIUuWLEl9fX223Xbb9Y7vtNNOSZKFCxdudKynnnoqa9asyciRIzcYlqpkrCT51a9+leRvga1NUS6X09DQsNG6xsbGTX6u3hgboCvq6+u7bezO9l2ALUl39t1E7wXYEGte2DJ093k35/U6z5oXoOdZ8wL0rO5e80J/1++CV8uWLUuSNpcYfL3BgwcnSV577bVOj7XuMe2Nta6uIz/72c9yxx13ZOzYsfnABz6w0fqNWb16dR566KFNHmdTdDZwBtBTJkyY0G1j94W+C9DXdGffTfRegA2x5gWqwXm9zrPmBeh51rwAPau717zQ3/XZ4NV73vOeLF68uNP106dPzznnnNONM+q6m2++OV//+tczbNiwXHjhhRkwYMAmjzlgwIDsuuuuG61rbGzsthMpo0ePTl1dXbeMDdDXdLbvAlA9ei9Az9J3oe/oznN6ifN6fYneC9Cz9F0AoNr6bPBq1KhRKZVKna4fNmxYkr/tdNXeLlTLly9PkgwdOnSjY64ba91j2hurvd21kuTWW2/N//f//X/ZZpttcumll7ZennBTFQqFXt/yr66urtfnANBT+kLfBdjS6L0APUvfhS2H83p9h94L0LP0XQCg2vps8OrSSy/t0uPq6+szfPjwLFmyJC+88EK23XbbNseffPLJJGv/qmtj3vzmN6e2tjZPP/101qxZk9ra2orGuvHGG/OZz3wmw4YNy6WXXtqp5wQAAAAAAAAAAPq+mt6eQHeYPHlykuTOO+9c79js2bOTJJMmTdroOFtttVXe9ra3paGhIfPnz1/v+B133NHm+V7vN7/5Tf7lX/4lw4cPz89+9jOhKwAAAAAAAAAA6Ef6ZfBq6tSpSZLvfe97bS45+NBDD2XmzJnZeuutM2XKlDaPWbJkSR577LH1LlG4bqwLLrggTU1NrffPmjUrc+fOzc4777xeiOvqq6/O5z73ueywww752c9+llGjRlX19QEAAAAAAAAAAL2rz15qcFPsu+++mTZtWi6//PIcddRROeSQQ7JixYpcf/31aW5uzpe//OUMGTKkzWO+853v5Oqrr87555+fY445pvX+I488MjfddFNuu+22HHPMMTnwwAPzwgsv5IYbbshWW22Vr3/9620uQXj33Xfn7LPPTktLSyZPnpxf//rX681vyJAhOemkk7rt9QMAAAAAAAAAAN2rXwavkuScc87J2LFjc8UVV+TKK69MsVjMXnvtldNPPz0TJ07s9DiFQiEXXHBBLr300vz617/OZZddlvr6+hx44IH553/+54wdO7ZN/TPPPJOWlpYkya9+9asNjrnjjjsKXgEAAAAAAAAAwGas3wavCoVCPvjBD+aDH/xgp+q/8Y1v5Bvf+MYGjw0YMCCnnnpqTj311I2Oc8wxx7TZMauvqEsh1bqy5NqxAAAAAAAAAABgy9Vvg1esVSwWUygUMqZmYFXHLRQKKRZ9+QAAAAAAAAAAsGWSnOnnSqVSxo8fn+bm5qqOWywWUyqVqjomAAAAAAAAAABsLgSvtgClUklICgAAAAAAAAAAqqimtycAAAAAAAAAAACwuRG8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAAAAACokeAUAAAAAAAAAAFAhwSsAAAAAAAAAAIAKCV4BAAAAAAAAAABUSPAKAAAAAAAAAACgQoJXAAAAAAAAAAAAFRK8AgAAAAAAAAAAqJDgFQAAAAAAAAAAQIUErwAAAAAAAOD/397dxkhVmAscf3ZdtipoKyIvbjWhlB2gtNGCNRTWyJaIgLZoQXdboL60xZdKSNPED22a9CWhTUOwoiGI1korCeBuLUrBN4TStIrdhRZoqWJqI1CohpWqVF1w7od73Xs3s3o97sw5zM7vl/jBc2bOPLOEP0fzMAMAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAIKGarAcAAAAAAKDQKVEVxfy7s/99PQAAAKBYLF4BAAAAAJxAampqoqqqKkZUn1z0a1dVVUVNjf8tDAAAAMXgv7ABAAAAAE4gtbW1MXbs2Dh27FjRr11TUxO1tbVFvy4AAABUIotXAAAAAAAnmNraWgtSAAAAcIKrznoAAAAAAAAAAACAcmPxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQkMUrAAAAAAAAAACAhCxeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAIAAAAAAAAAAEjI4hUAAAAAAAAAAEBCFq8AAAAAAAAAAAASsngFAAAAAAAAAACQUE3WA5BcZ2dn5PP52LlzZ9ajAJxQamtrI5fLFf26ugvQs1J1N0J7Ad6Ne16AdLnnBUife16AdJXynhcqgcWrMlRVVZX1CAAVRXcB0qe9AOnSXYD0aS9AunQXACiFqnw+n896CAAAAAAAAAAAgHJSnfUAAAAAAAAAAAAA5cbiFQAAAAAAAAAAQEIWrwAAAAAAAAAAABKyeAUAAAAAAAAAAJCQxSsAAAAAAAAAAICELF4BAAAAAAAAAAAkZPEKAAAAAAAAAAAgIYtXAAAAAAAAAAAACVm8AgAAAAAAAAAASMjiFQAAAAAAAAAAQEIWrwAAAAAAAAAAABKyeAUAAAAAAAAAAJCQxSsAAAAAAAAAAICEarIegMqWy+Xe8/ydd94ZU6ZMSWka3ss7v1bV1dXx5JNPxtChQ3t83IwZM2Lv3r0REbFy5cq48MILU5sReH+0tzzoLvQdulsedBf6Fu0tD9oLfYfulgfdhb5Fe8uD9gL0fRavyFz//v3j2muv7fHc8OHDU56G91JTUxPHjh2LlpaWuPnmmwvOt7W1xd69e7seB5y4tLc86C70HbpbHnQX+hbtLQ/aC32H7pYH3YW+RXvLg/YC9G0Wr8jcgAED4pZbbsl6DN6HM888MwYNGhQtLS1x0003RVVVVbfzDzzwQPTr1y8++9nPxpYtWzKaEng/tLc86C70HbpbHnQX+hbtLQ/aC32H7pYH3YW+RXvLg/YC9G3VWQ8AlJdZs2bF/v374/e//32346+99lps3LgxGhsbY+DAgRlN1/e9+uqrsWLFipg7d240NDTE2LFjY+LEibFgwYLYs2dPweNbW1sjl8tFa2trPPXUUzF37tw4//zz49Of/nR8/etfj+eff77b47/5zW9GLpeLtra2Hl//V7/6VeRyuViyZElJ3h9QSHezp71QWXQ3e7oLlUd7s6e9UFl0N3u6C5VHe7OnvUCpWLwCErn88svjlFNOibVr13Y7/tBDD8XRo0dj9uzZGU1WGZ5//vn46U9/Gv369YvGxsb4yle+EuPGjYtNmzbF1VdfHbt27erxeZs3b47rr78++vfvH01NTTF+/PjYsmVLzJkzJw4fPtz1uObm5oiIWLNmTY/XWb16dVRXV8dVV11V/DcH9Eh3s6e9UFl0N3u6C5VHe7OnvVBZdDd7uguVR3uzp71AqfiqQTL32muvxdKlSwuOf+xjH4sZM2ZkMBHv5bTTToupU6fG+vXro6OjI84444yIiFi7dm3U1dXFxIkTY/369RlP2XeNGDEitm7d2vVzf8ff/va3aGpqiiVLlsQ999xT8LzHH3887rnnnpgwYULXscWLF8ddd90VLS0t8bWvfS0iIi644IL4+Mc/Hhs3boxvf/vbcfrpp3c9/rnnnovt27dHQ0ND1NXVlegdkhbtLR+6mz3tpRh0t3zobvZ0l2LR3vKhvdnTXopBd8uH7mZPdykW7S0f2ps97QVKxSdekbnXX3897rjjjoJ/3FycuGbPnh2dnZ3x61//OiIi/vrXv8bu3bvjyiuvjOpqWSml0047reCGMCIil8vFhRdeGE8//XR0dnYWnJ8+fXq3G8KI6Nqo37lzZ7fjzc3N8cYbb8SDDz7Y7fjq1asjIqKpqak3b4EThPaWF93NlvZSDLpbXnQ3W7pLsWhvedHebGkvxaC75UV3s6W7FIv2lhftzZb2AqXiE6/I3JAhQ+K3v/1t1mOQwPjx42P48OHxwAMPxDXXXBNr1qyJ6urqmDVrVtajVYQ//vGPcd9998WOHTuio6Oj4Cawo6MjBg8e3O3Y2LFjC64zbNiwiIg4cuRIt+MzZ86MxYsXx5o1a2LevHkREfHmm2/GunXrYvDgwXHxxRcX8d2QFe0tL7qbPe2lt3S3vOhu9nSXYtDe8qK92dNeekt3y4vuZk93KQbtLS/amz3tBUrB4hXwgcyaNSt+8pOfxFNPPRUPP/xwNDQ0xNChQ7Meq8975JFHYuHChXHyySfHpEmT4qMf/WiccsopUVVVFY8//njs2bMn3nrrrYLn/d+PM31HTc1//xHw9ttvdzs+YMCAuPzyy2P16tXR1tYW48aNiw0bNsSRI0fixhtv7HoekC7dzY72QmXS3ezoLlQu7c2O9kJl0t3s6C5ULu3NjvYCpeJ3NvCBzJw5M2677ba49dZb49///nfMnj0765EqwtKlS6O2tjZaW1tj+PDh3c7t2LGjaK/T3Nwcq1evjjVr1sS4ceO6/taFX2fIju5mR3uhMuludnQXKpf2Zkd7oTLpbnZ0FyqX9mZHe4FS8WWxwAcyaNCguPjii+PgwYMxaNCgmDx5ctYjVYR//OMfMWLEiIIbwqNHj8bu3buL9jqjR4+O8847LzZu3Bjt7e3R1tYWkyZNirq6uqK9BpCM7mZHe6Ey6W52dBcql/ZmR3uhMuludnQXKpf2Zkd7gVKxeAV8YLfeemvceeedsWzZMh+NmZK6urp44YUX4l//+lfXsWPHjsWiRYuio6OjqK/V3Nwcb7zxRixcuDAiIq6++uqiXh9ITnezob1QuXQ3G7oLlU17s6G9ULl0Nxu6C5VNe7OhvUCpKDnwgZ1zzjlxzjnnZD1GRZk3b15873vfiyuuuCKmTp0aVVVV8fTTT8fLL78cn/nMZ2Lbtm1Fe61p06bFokWL4tChQzFkyBB/6wJOALqbDe2FyqW72dBdqGzamw3thcqlu9nQXahs2psN7QVKxSdeAZSRL33pS/HDH/4wBg4cGC0tLbFhw4aor6+PtWvXFv0jSj/0oQ/FZZddFhERX/ziF+Okk04q6vUByoX2AqRLdwHSp70A6dJdgPRpL1AqVfl8Pp/1EACcmJqbm2PHjh3xxBNPxNlnn531OAAVQXsB0qW7AOnTXoB06S5A+rQXKodPvAKgR+3t7dHe3h6NjY1uCAFSor0A6dJdgPRpL0C6dBcgfdoLlaUm6wEAOLGsWrUqDh06FC0tLXHSSSfFN77xjaxHAujztBcgXboLkD7tBUiX7gKkT3uhMvmqQQC6aWxsjIMHD8a5554bCxYsiOnTp2c9EkCfp70A6dJdgPRpL0C6dBcgfdoLlcniFQAAAAAAAAAAQELVWQ8AAAAAAAAAAABQbixeAQAAAAAAAAAAJGTxCgAAAAAAAAAAICGLVwAAAAAAAAAAAAlZvAJSs2/fvsjlctHY2Jj1KAAVQXcB0qe9AOnSXYD0aS9AunQX4MRm8QoAAAAAAAAAACAhi1cAAAAAAAAAAAAJWbwCAAAAAAAAAABIqCbrAYDkdu7cGUuXLo329vY4fvx45HK5uO6662LMmDHxuc99Lurq6mLTpk3dnnP48OH42c9+Fk8++WTs27cvqqurY+TIkTF79uyYNWtWVFVVdXv83LlzY9u2bbFy5cqora2NO+64I/70pz9FZ2dnjBkzJhYsWBATJkzocb7du3fH7bffHm1tbXH8+PEYOXJkXHvttfHJT37yPd9Xb2Y8fvx43H333bFr1644cuRIPPjggzF69OgP8NMFKKS7hTPqLlBq2ls4o/YCpaS7hTPqLlBq2ls4o/YCpaS7hTPqLkDv+cQrKDO/+93vorm5ObZs2RLDhg2LxsbGiIi45ZZb4pe//GWPz9mzZ098/vOfjxUrVsR//vOfmDhxYpx//vmxd+/e+M53vhPf+ta33vX1Nm/eHHPmzImOjo5oaGiIc889N9rb2+OrX/1qPPPMMwWP/8Mf/hBNTU2xefPmGDZsWEyePDmqqqpi4cKFcd99973r6/RmxvXr18d1110Xhw8fjoaGhhg3blzBTSTAB6W7hXQXKDXtLaS9QCnpbiHdBUpNewtpL1BKultIdwGKJA+Ujddffz0/ceLEfH19ff7uu+/udu6xxx7Ljx49Ol9fX5+fPHly1/GjR4/mJ0+enK+vr8/fe++9+ePHj3edO3jwYP6KK67I19fX59euXdvtenPmzMnX19fnc7lc/uGHH+46/vbbb+e///3v5+vr6/Nz587t9pyjR492zbds2bJu537zm9/kR40aVTBfMWasr6/Pt7S0vJ8fIUAiuqu7QPq0V3uBdOmu7gLp017tBdKlu7oLUEo+8QrKyCOPPBIvvfRSjBo1Kq6//vpu56ZMmRKXXHJJwXNaW1tj//79MXPmzLjmmmuiuvp/f9sPGTIkfvCDH0RExP3339/ja06bNi1mzJjR9e9VVVVx8803R0REe3t7dHZ2Fsw3cuTImD9/fsF1pkyZ0uNr9HbGSZMmxZVXXtnjOYDe0F3dBdKnvdoLpEt3dRdIn/ZqL5Au3dVdgFKyeAVl5J2PHp02bVqP5y+77LKCY1u3bo2IiEsvvbTH54wZMyZOPfXU2LNnT7z55psF5y+66KKCYwMHDoyPfOQj0dnZGR0dHV3Ht23bFhERM2bM6PGjSL/whS/0OENvZ3y3G06A3tJd3QXSp73aC6RLd3UXSJ/2ai+QLt3VXYBSqsl6AOD9O3ToUEREnH322T2er6urKzj24osvRkTEDTfc8P9e/5VXXokhQ4Z0OzZ06NAeH9u/f/945ZVX4q233iqYr6c53ut4b2d8t58HQG/pru4C6dNe7QXSpbu6C6RPe7UXSJfu6i5AKVm8gjLU07b7ux0/fvx4REQ0NjbGhz/84fe8br9+/QqO/d+PJS2V3s548sknl2QugHfobne6C6RBe7vTXqDUdLc73QXSoL3daS9Qarrbne4CFIfFKygjgwcPjoiIf/7znz2e379/f8GxYcOGxd///veYN29eTJgwoaTzvbMpf+DAgfc9X0S6MwIkobsA6dNegHTpLkD6tBcgXboLQCmVftUWKJrx48dHRMSGDRt6PL9+/fqCYw0NDRERsXHjxtIN9j8uuOCCrjny+XzB+XXr1vX4vDRnBEhCdwHSp70A6dJdgPRpL0C6dBeAUrJ4BWXk0ksvjTPPPDP+8pe/xM9//vNu5zZt2tTjjdVVV10VQ4cOjdWrV8ddd93V7Tuj37F379549NFHez3f1KlT46yzzopnn302VqxY0e3co48+Go899liPz0tzRoAkdFd3gfRpr/YC6dJd3QXSp73aC6RLd3UXoJR81SCUkf79+8ePfvSjuOmmm2LRokXR2toaI0eOjAMHDsT27dtj7ty5sXLlym7f0zxgwIBYvnx5zJ8/PxYvXhz33ntv5HK5GDRoULz66qvx7LPPxoEDB2L69OlxySWX9Gq+U089NX784x/HDTfcEIsXL46HHnoo6uvrY//+/V3z/eIXvyh4XpozAiShu7oLpE97tRdIl+7qLpA+7dVeIF26q7sApWTxCsrMRRddFKtWrYrbb789tm/fHi+++GKMHDkylixZEmeddVasXLkyzjjjjG7PGTVqVKxbty7uv//+eOKJJ+LPf/5zdHZ2xqBBg6Kuri6amppi2rRpRZlv4sSJsWrVqli6dGm0tbXFvn37YsSIEbF48eI477zzerwxTHtGgCR0FyB92guQLt0FSJ/2AqRLdwEolap8T18UC5SlZcuWxW233RZf/vKX47vf/W7W4wD0eboLkD7tBUiX7gKkT3sB0qW7APRGddYDAMm89NJLcfDgwYLjW7dujeXLl0dExMyZM1OeCqDv0l2A9GkvQLp0FyB92guQLt0FoFR81SCUmV27dsWNN94YuVwu6urqorq6Ol544YV47rnnIiJi/vz58alPfSrjKQH6Dt0FSJ/2AqRLdwHSp70A6dJdAErFVw1Cmdm/f38sX748nnnmmXj55Zfj6NGjcfrpp8cnPvGJaGpqiilTpmQ9IkCforsA6dNegHTpLkD6tBcgXboLQKlYvAIAAAAAAAAAAEioOusBAAAAAAAAAAAAyo3FKwAAAAAAAAAAgIQsXgEAAAAAAAAAACRk8QoAAAAAAAAAACAhi1cAAAAAAAAAAAAJWbwCAAAAAAAAAABIyOIVAAAAAAAAAABAQhavAAAAAAAAAAAAErJ4BQAAAAAAAAAAkNB/AV6mF3pR7hFiAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df_fairness = pd.read_csv('df_fairness.csv') \n", "df_plt = (df_fairness\n", " .melt(\n", " id_vars = ['insurance','ethnicity','gender']\n", " )\n", " )\n", "df_plt = df_plt.loc[~df_plt.variable.str.contains('Brier')] \n", "df_fairness\n", "import seaborn as sns\n", "sns.set_theme(style='whitegrid',font_scale=1.3)\n", "\n", "g = sns.catplot(\n", " kind='bar',\n", " edgecolor=\"0.8\",\n", " data=df_plt,\n", " row='variable',\n", " col='ethnicity',\n", " x='gender',\n", " hue='insurance',\n", " y='value',\n", " sharey='row',\n", " aspect=0.75,\n", " palette='Set3'\n", ")\n", "\n", "g.refline(y=0)\n", "\n", "# make titles nicer \n", "\n", "nice_cols = {\n", "'AMERICAN INDIAN/ALASKA NATIVE':'AI/AN',\n", " 'BLACK/AFRICAN AMERICAN':'BLACK',\n", " 'HISPANIC/LATINO':'HISP/LTN',\n", " 'WHITE':'WHITE',\n", " ' any ':'ANY',\n", " 'ASIAN':'ASIAN'\n", "}\n", "for (row,col),ax in g.axes_dict.items():\n", " if 'any' in col: \n", " ax.set_ylabel(row)\n", " if row == 'FNR':\n", " ax.set_title(nice_cols[col])\n", " else:\n", " ax.set_title('')\n", " " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.0" } }, "nbformat": 4, "nbformat_minor": 5 }