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Abstract

Background and 
Aims

Robust and convenient risk stratification of patients with paediatric and adult congenital heart disease (CHD) is lacking. This 
study aims to address this gap with an artificial intelligence-enhanced electrocardiogram (ECG) tool across the lifespan of a 
large, diverse cohort with CHD.

Methods A convolutional neural network was trained (50%) and tested (50%) on ECGs obtained in cardiology clinic at the Boston 
Children’s Hospital to detect 5-year mortality. Temporal validation on a contemporary cohort was performed. Model per
formance was evaluated using the area under the receiver operating characteristic and precision-recall curves.

Results The training and test cohorts composed of 112 804 ECGs (39 784 patients; ECG age range 0–85 years; 4.9% 5-year mor
tality) and 112 575 ECGs (39 784 patients; ECG age range 0–92 years; 4.6% 5-year mortality from ECG), respectively. Model 
performance (area under the receiver operating characteristic curve 0.79, 95% confidence interval 0.77–0.81; area under the 
precision-recall curve 0.17, 95% confidence interval 0.15–0.19) outperformed age at ECG, QRS duration, and left ventricular 
ejection fraction and was similar during temporal validation. In subgroup analysis, artificial intelligence-enhanced ECG out
performed left ventricular ejection fraction across a wide range of CHD lesions. Kaplan–Meier analysis demonstrates pre
dictive value for longer-term mortality in the overall cohort and for lesion subgroups. In the overall cohort, precordial lead 
QRS complexes were most salient with high-risk features including wide and low-amplitude QRS complexes. Lesion-specific 
high-risk features such as QRS fragmentation in tetralogy of Fallot were identified.

Conclusions This temporally validated model shows promise to inexpensively risk-stratify individuals with CHD across the lifespan, which 
may inform the timing of imaging/interventions and facilitate improved access to care.
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Structured Graphical Abstract

Can artificial intelligence-enhanced electrocardiogram (AI-ECG) predict 5-year mortality in paediatric and adult patients with congenital 
heart diseases?

AI-ECG successfully predicted 5-year mortality and outperformed conventional markers such as age, ejection fraction, and QRS duration.

AI-ECG can provide inexpensive and convenient risk stratification in patients with congenital heart disease across lifespan, which may 
inform clinical decision-making and improve access to care.

Key Question

Key Finding

Take Home Message

1.0

0.8

0.6

0.4

0.2

0.0
0 20

Age (y)

RV pathology

40 60

1.0

0.8

0.6

0.4

0.2

0.0
0 20

Age (y)

LV pathology

40 60

1.0

0.8

0.6

0.4

0.2

0.0
0 0.5

1-Speci�city

Se
ns

iti
vi

ty

5-year mortality

1

0 0.5 1

ToF
DORV
PA
TAPVR
Tricuspid atresia

D-loop TGA
CoA

HLHS

Cardiomyopathy

All-cause
mortality

III aVF V3 V6

II aVL V2 V5

I aVR V1 V4
High

Low

salience

112 804 ECGs in 39 784 patients

ECG input CNN Outcome

Overall

AUPRC AUROC

Lesion

Cardiomyopathy
PA
ToF
DORV
HLHS
Tricuspid atresia
CAVC
L-loop TGA

CoA
TAPVR
VSD
ASD
D-loop TGA

salience

Model performanceLarge and diverse paediatric and adult congenital cohort

Model explainability

Training cohort

A large and diverse paediatric and adult congenital heart disease cohort was used to train and test an artificial intelligence-enhanced electrocardio
gram algorithm to accurately predict 5-year mortality across a range of congenital heart disease lesions. In an effort to interpret model behaviour, 
model explainability analysis was performed. AI-ECG, artificial intelligence-enhanced electrocardiogram; ASD, atrial septal defect; CAVC, complete 
atrioventricular canal defect; CNN, convoluted neural network; CoA, coarctation of the aorta; DORV, double outlet right ventricle; ECG, electro
cardiogram; HLHS, hypoplastic left heart syndrome; LV, left ventricle; LVEF, left ventricular ejection fraction; PA, pulmonary atresia; RV, right ven
tricle; TAPVR, totally anomalous pulmonary venous return; TGA, transposition of the great arteries; ToF, tetralogy of Fallot; VSD, ventricular septal 
defect.
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Introduction
With recent medical and surgical advancements, most children born 
with congenital heart diseases (CHDs) now survive into adulthood.1

In the USA alone, it is estimated that approximately 2.4 million 

individuals are living with CHD, including approximately 1 million chil
dren and 1.4 million adults.2 These conditions require lifelong follow-up 
involving frequent clinic visits and cardiac testing with significantly higher 
associated costs throughout the lifespan.3–5 The necessity to 
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facilitate the management of this growing complex population with 
a wide range of structural anomalies and distinct long-term conse
quences has motivated efforts to risk stratify CHD patients across 
the lifespan.6 Doing so may reduce a significant portion of unnecessary 
and expensive testing, while simultaneously identifying individuals that 
might benefit from closer monitoring or intervention thereby improv
ing clinical outcomes.

However, the development of robust risk prediction models— 
particularly in CHD—faces multiple challenges including a paucity of 
big data, limited data sources, reliance on expensive imaging modalities 
(with an associated need for paediatric cardiologist expertise), and sub
optimal model performance.6 This premise motivated multiple recent 
calls for artificial intelligence applications to improve risk stratification 
in CHD.6,7

Major adverse outcomes in this unique population often relate to 
ventricular dysfunction or arrhythmias, and extraction of conventional 
electrocardiogram (ECG) features such as QRS duration in CHD 
[e.g. tetralogy of Fallot (ToF)] has shown value in risk stratification.8

In addition, deep learning-based artificial intelligence-enhanced ECG 
(AI-ECG) algorithms show promise for diagnostic and prognostic 
applications in adults,9–15 making it similarly conceivable that AI-ECG 
may aid risk stratification also in the CHD population. However, there 
remains a paucity of available AI-ECG applications to congenital 
cardiology16 given (i) the absence of extensive data sets, impeding 
similar research; (ii) AI-ECG algorithms derived from adults with struc
turally normal hearts would be expected to have poor generalizability 
to CHD cohorts. To this end, there remain (to our knowledge) no 
AI-ECG algorithms to predict mortality in CHD.

In this work, we leverage an exhaustive electronic database at a large 
congenital heart centre to address this gap. To do so, a convolutional 
neural network was trained to predict 5-year mortality using 
>100 000 ECGs on nearly 40 000 patients and tested on an equally 
sized cohort as well as on a contemporary cohort. Subgroup analysis 
defined model performance within a range of specific CHDs. Survival 
analysis investigated longer-term survival for patients. Finally, saliency 
mapping and median waveform analysis provided lesion-specific model 
explainability.

Methods
Our study adheres to the TRIPOD + AI guidelines.17

Study population and patient assignment
Patient data were utilized from the Boston Children’s Hospital be
tween 1990 (the earliest available digitized ECG in the clinic) until 
June 2018 (to minimize right censoring in predicting 5-year mortality). 
Inclusion criteria consisted of any patient presenting to the cardiology 
clinic at the Boston Children’s Hospital with at least one ECG per
formed. Temporal validation for predicting 1-year mortality was per
formed on any patient presenting to the cardiology clinic at the 
Boston Children’s Hospital with at least one ECG performed from 
July 2018 to July 2022 (to minimize right censoring in predicting 
1-year mortality). All data were retrieved from an internal database 
in November 2023.

Similar to prior work,13,16 a group stratified design was used to partition 
the main cohort at the patient level such that all ECGs for a given patient 
were restricted to either the training or internal testing cohort. Patients 
were randomly partitioned 50:50 into training and internal testing cohorts. 
Patients from the training data set were excluded from the temporal valid
ation cohort.

Data retrieval
Raw ECG signals were exported from the MUSE ECG data management 
system (GE Healthcare, Chicago, IL, USA), which contains 1D vectors of 
data (sampling rate of 250 Hz for 10-s duration) for each lead (I, II, and 
V1–6). From these vectors, Einthoven’s law18 and the Goldberger equa
tion19 were implemented to obtain leads III, aVF, aVL, and aVR. Other 
data retrieved from an internal database at the Boston Children’s 
Hospital include age, sex, and physician-reviewed ECGs measurements 
(e.g. QRS interval, QRS axis, T axis, P axis, PR interval, QT interval, QTc, 
and heart rate).

Patients with known CHD, cardiomyopathy, pre-excitation syndromes, 
and channelopathies were identified based on the institutional Fyler coding 
system,20 which has been mapped into the International Paediatric and 
Congenital Cardiac Code International Classification of Diseases-11 
nomenclatures.21

Quality control and data pre-processing
An ECG was discarded if any lead was not 2500 samples long or if any lead 
recording had missing lead information. After quality control, a high pass fil
ter was utilized22 to account for recording errors (e.g. baseline wander and 
electrical interference) with cut-off frequency 0.8 Hz, rejection band 0.2 Hz, 
ripple in passband 0.5 dB, and attenuation in rejection band 40 dB. Finally, 
the ECG was then trimmed to 2048 samples (∼8 s) to facilitate convenient
ly working with convolutional neural networks.

Definition of outcomes
The primary outcome was 5-year mortality after an ECG. All-cause mortal
ity was used as the primary outcome given (i) heart failure is the most com
mon cause of death in adult CHD23 and (ii) it aligns with previous AI-ECG 
work14,15 and recent CHD work.24 To obtain all-cause mortality, date of 
death was retrieved from an internal institutional database. Secondary out
comes include 1-, 2-, 3-, and 4-year mortality after an ECG. For temporal 
validation, 1-year mortality was used to minimize right censoring.

To perform a secondary Kaplan–Meier survival analysis for time to mor
tality, we obtained the date last known alive within the internal database (i.e. 
last recorded event in the institutional database for a given patient).

Model selection, architecture, and training
Similar to our prior work,16 the AI-ECG model was developed solely on the 
training set, which was further partitioned 95% for training and 5% for val
idation to perform hyperparameter tuning. 12 × 2048 ECG samples were 
used as inputs to a convolutional neural network that is similar to the re
sidual network previously described25 that is adapted for unidimensional 
signals. A diagram and details of the architecture used in this study are 
shown in Mayourian et al.16 The output of the last block is fed into a fully 
connected layer with a sigmoid activation function as the outcomes (1-, 
2-, 3-, 4-, and 5-year mortality) within this single model are not mutually 
exclusive.

The final hyperparameters were obtained via a grid search on the training 
set among the following options: kernel size [3, 9, 17], batch size [8, 32, 64], 
and initial learning rate [0.01, 0.001, 0.0001, 0.00001]. The average cross- 
entropy was minimized using the Adam optimizer. Maximum 150 epochs 
were used with early stopping based on validation loss. The model with 
the lowest validation loss during hyperparameter tuning was selected as 
the final model. The final hyperparameters were kernel size 17, batch size 
32, and learning rate 0.001.

Performance evaluation and statistical 
analyses
Given the potential for loss to follow-up, model performance for all binary 
outcomes (e.g. 1- and 5-year mortality) was assessed only on ECGs with 
documented follow-up after the outcome timeframe or mortality events 
within the outcome timeframe. Consistent with prior works,16,26–28

ECG-based deep learning to predict mortality in CHD                                                                                                                                         3
D

ow
nloaded from

 https://academ
ic.oup.com

/eurheartj/advance-article/doi/10.1093/eurheartj/ehae651/7817716 by H
arvard Biostatistics user on 10 O

ctober 2024



multiple ECGs per patient were allowed in the training cohort. In contrast, 
model performance was evaluated on one ECG per patient. The ECG se
lected for testing was either the first available, the last available, or a ran
domly selected ECG per patient.

Given the imbalanced data set (i.e. low prevalence of mortality), the area 
under the receiver operating characteristic curve (AUROC) and area under 
the precision-recall [i.e. positive predictive value (PPV) sensitivity] curve 
(AUPRC) were computed. To benchmark the model, age at ECG (previ
ously used to benchmark AI-ECG predictions of mortality14), QRS duration 
(a conventional ECG predictor of mortality in ToF29), and QTc duration (an 
independent risk factor for sudden cardiac death30) were used. In addition, 
left ventricular ejection fraction (LVEF)—an established determinant of car
diovascular morbidity and mortality31,32—from an echo within 2 days of the 
paired ECG was used as a benchmark when available. Other performance 
metrics evaluated included PPV, negative predictive value (NPV), sensitivity, 
and specificity. These metrics were calculated at the classification threshold 
maximizing the sensitivity and specificity (i.e. the Youden index) in the train
ing set. For all metrics, a higher value is indicative of better performance. 
Resampling with 1000 bootstraps was implemented to obtain performance 
metric median and 95% confidence intervals (CIs). Area under the receiver 
operating characteristic curves were compared when applicable via the 
DeLong test.33

Subgroup analyses
Subgroup analyses were performed on the test set for each disease of inter
est. Given that conduction disturbances are also a marker of disease pro
gression in CHD,8 we also assessed model performance when stratifying 
by QRS duration and presence of complete right bundle branch block. 
Area under the receiver operating characteristic curves and AUPRCs 
were calculated for each subgroup.

Survival analysis
Cox proportional hazards regression was used to evaluate factors asso
ciated with time from ECG until all-cause mortality. Patients who did not 
experience death were censored at the time of last known follow-up. 
Patients with unknown follow-up time after ECG were excluded from 
this secondary analysis. The Kaplan–Meier methodology was used to esti
mate primary outcome event rates.

Model explainability
In an effort to interpret model behaviour, analyses of median waveforms 
and saliency mapping were performed.

Median waveform analysis is a technique to visually represent single beats 
of the highest and lowest risk ECGs.16,27 Herein, a subset of test set ECGs 
(100 for the overall cohort, 25 for specific lesions) with the highest pre
dicted probability for a given outcome were used to create high-risk median 
waveforms, and a corresponding set with the lowest predicted probabilities 
was used to create low-risk median waveforms. Median waveforms were 
generated in each lead using the NeuroKit Python toolbox34 by (i) detecting 
QRS complexes, (ii) interpolating all ECGs to the same heart rate, (iii) com
puting the median voltage across beats for each patient, and (iv) computing 
the median voltage across patients for each time bin in the cardiac cycle.16,27

Saliency mapping aims to identify which features of the ECG input 
contribute to model prediction by highlighting components of the ECG 
where a change in input (i.e. ECG voltage) leads to a relatively large change 
in prediction.27 Saliency maps were created using a Shapley Additive 
Explanations (SHAP) framework35 for the high-risk ECGs. The above me
dian waveform steps were similarly implemented on SHAP values over 
time. Darker regions in saliency maps correspond to greater contribution 
to the prediction of 5-year mortality.

Software
Programming codes used to perform the analyses are available upon rea
sonable request. The convolutional neural network used the Keras 

framework with a TensorFlow (Google) backend using Python 3.9.36

Deep learning was executed on institutional graphics processing units. All 
other pre- and post-processing codes were written in Python 3.936 and R 
4.0,37 which was executed locally.

Results
Internal patient population characteristics
The training cohort comprised of 112 804 ECGs from 39 784 pa
tients [median age at ECG 7.7 [interquartile range (IQR), 1.6–14.8; 
range 0–85] years; 52% male]. The first digitized ECG included in 
this cohort was from 1990. As shown in Table 1, a wide range of 
CHD lesions were included, including 11% with ventricular septal de
fects, 4.5% with cardiomyopathy, 3.8% with coarctation of the aorta, 
3.5% with ToF, 2.2% with D-loop transposition of the great arteries, 
1.2% with hypoplastic left heart syndrome, 1.0% with L-loop trans
position of the great arteries, 0.8% with dextrocardia, and 0.7% 
with tricuspid atresia. The internal testing cohort included 112 575 
ECGs from 39 784 distinct patients [median age at ECG 7.9 (IQR, 
1.5–14.8; range 0–92) years; 52% male] and composed of a similar 
breakdown of congenital heart lesions. The contemporary cohort in
cluded 42 927 ECGs from 25 537 patients. Numerous differences in 
baseline characteristics were noted in the contemporary cohort in
cluding higher prevalence of all disease groups (except ventricular 
septal defects) and older age at ECG [median age at ECG 10.5 
(IQR, 3.1–16.7) years].

In the training cohort, there were 806 (2.0%) mortality events at me
dian age 18.9 (IQR, 8.0–32.4) years. In the testing cohort, there were 
870 (2.2%) mortality events at median age 19.4 (IQR, 7.5–32.2) years. 
Five-year mortality after ECGs in the training and test cohorts was 
4.9% and 4.6%, respectively. Similar 1-year mortality events (1.0%) 
were noted across internal test and temporal validation cohorts, with 
a younger age of mortality in the temporal validation cohort [median 
age 13.1 (IQR, 4.7–22.6) years]. Electrocardiograms with mortality 
within 5 years had higher heart rates, longer QRS and QTc intervals, 
and lower paired echo ejection fraction (see Supplementary data 
online, Table S1).

Survival in the training and testing cohorts was similar [hazard ratio 
1.0 (95% CI 0.9–1.0), P = .3; log-rank P = .2] and spanned across the life
span (Figure 1A). As shown in Figure 1B and C, a large portion of patients 
survive to adulthood, with survival rates varying by lesion. The lowest 
long-term survival was lesions that typically involve single ventricle pal
liation (tricuspid atresia for RV pathology, hypoplastic left heart syn
drome for left ventricular pathology).

Model performance
During testing (Figure 2A), the model achieved the following perform
ance in 5-year mortality when using the random, last, and first ECGs: 
AUROCs of 0.79 (95% CI 0.77–0.81), 0.82 (95% CI 0.80–0.83), and 
0.75 (95% CI 0.72–0.77), respectively, and AUPRCs of 0.17 (95% CI 
0.15–0.19), 0.25 (95% CI 0.23–0.28), and 0.11 (95% CI 0.09–0.12), re
spectively. The randomly selected ECG performance outperformed 
age at ECG [AUROC 0.58 (95% CI 0.55–0.61); AUPRC 0.11 (95% CI 
0.08–0.13); P < .001], QRS duration [AUROC 0.57 (95% CI 0.54– 
0.60); AUPRC 0.07 (95% CI 0.06–0.08); P < .001], QTc duration 
[AUROC 0.48 (95% CI 0.45–0.50); AUPRC 0.05 (95% CI 0.04–0.06); 
P < .001], and paired echo LVEF [AUROC 0.62 (95% CI 0.57–0.68) 
[AUPRC 0.10 (95% CI 0.07–0.15); P < .001] when predicting 5-year 
mortality (Figure 2B), as well as 1-year mortality (see Supplementary 
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data online, Figure S1). Artificial intelligence-enhanced ECG similarly 
outperformed these metrics when using the last available ECG (see 
Supplementary data online, Figure S2).

When using a random ECG, the sensitivity, specificity, and PPV were 
0.66 (95% CI 0.62–0.70), 0.78 (95% CI 0.78–0.79), and 12.4% (95% CI 

11.6%–13.1%), respectively, with 76.4% (95% CI 75.6%–77.1%) pre
dicted negative (see Supplementary data online, Table S2). A NPV of 
∼98% was achieved independent of ECG used (see Supplementary 
data online, Table S2). Model calibration is shown in Supplementary 
data online, Figure S3.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Internal cohort baseline characteristics

Characteristic Training Testing Temporal validation

Demographics

Patients 39 784 39 784 25 537

Sex

Female 19 061 (48%) 19 009 (48%) 12 496 (49%)

Male 20 718 (52%) 20 769 (52%) 13 036 (51%)

Unknown 5 (<0.1%) 6 (<0.1%) 5 (<0.1%)

Diagnosisa

ToF 1374 (3.5%) 1352 (3.4%) 1029 (4.0%)

Cardiomyopathy 1810 (4.5%) 1773 (4.5%) 1273 (5.0%)

ASD 1498 (3.8%) 1551 (3.9%) 2638 (10%)

CAVC 248 (0.6%) 205 (0.5%) 339 (1.3%)

CoA 1500 (3.8%) 1470 (3.7%) 1298 (5.1%)

DORV 526 (1.3%) 530 (1.3%) 515 (2.0%)

D-loop TGA 884 (2.2%) 914 (2.3%) 729 (2.9%)

HLHS 487 (1.2%) 465 (1.2%) 553 (2.2%)

L-loop TGA 380 (1.0%) 389 (1.0%) 343 (1.3%)

PA 621 (1.6%) 627 (1.6%) 509 (2.0%)

TAPVR 240 (0.6%) 257 (0.6%) 262 (1.0%)

Tricuspid Atresia 271 (0.7%) 247 (0.6%) 195 (0.8%)

VSD 4388 (11%) 4196 (11%) 2674 (10%)

Dextrocardia 304 (0.8%) 326 (0.8%) 290 (1.1%)

WPW syndrome 1070 (2.7%) 1003 (2.5%) 678 (2.7%)

Channelopathy 223 (0.6%) 231 (0.6%) 283 (1.1%)

ECG characteristics

ECGs 112 804 112 575 42 927

Age at ECG (years) 7.7 (1.6, 14.8) 7.9 (1.5, 14.8) 10.5 (3.1, 16.7)

CRBBB 5749 (5.1%) 5873 (5.2%) 2572 (6.0%)

Outcomes

Mortalities 806 (2.0%) 870 (2.2%) 225 (0.9%)

Age of death (years) 18.9 (8.0, 32.4) 19.4 (7.5, 32.2) 13.1 (4.7, 22.6)

1-year mortality after ECGb 909 (1.2%) 781 (1.0%) 283 (1.0%)

5-year mortality after ECGb 2964 (4.9%) 2779 (4.6%)

Age intervals denote interquartile range. 
ASD, atrial septal defect; CoA, coarctation of the aorta; CAVC, complete atrioventricular canal defect; CRBBB, complete right bundle branch block; DORV, double outlet right ventricle; 
HLHS, hypoplastic left heart syndrome; LVEF, left ventricular ejection fraction; PA, pulmonary atresia; ToF, tetralogy of Fallot; TAPVR, total anomalous pulmonary venous return; TGA, 
transposition of the great arteries; VSD, ventricular septal defect; WPW, Wolff–Parkinson–White. 
aNote select lesions included, some of which overlap. 
bDenominator is equal to the total number of ECGs with either mortality events within the outcome timeframe or with documented follow-up after the outcome timeframe.
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Contemporary model performance
During temporal validation, AUROC of 0.79 (95% CI 0.74–0.83) and 
AUPRC of 0.04 (95% CI 0.03–0.06) was achieved to predict 1-year 
mortality (Figure 2C).

Subgroup analysis
In a subgroup analysis (Figure 3), model performance appeared lesion and 
age dependent. When using a random ECG per patient, model perform
ance in extra-cardiac pathophysiology (i.e. coarctation of the aorta and 
total anomalous pulmonary venous return) was as follows: AUROCs 
of 0.86 (95% CI 0.81–0.91) and 0.80 (95% CI 0.72–0.88), respectively, 
and AUPRCs of 0.30 (95% CI 0.19–0.41) and 0.38 (95% CI 0.20–0.56), 
respectively. For a wide range of congenital heart lesions with accumulat
ing pathophysiologic myocardial burden over time (e.g. cardiomyopathy, 
pulmonary atresia, double outlet right ventricle, hypoplastic left heart 
syndrome, and tricuspid atresia), lower AUROC with higher AUPRC 
patterns were noted. These trends were consistent when using the 
last available ECG, and less so when using the first available ECG. 
Similarly, the dextrocardiac subgroup had a lower AUROC [0.71 (95% 
CI 0.61–0.81)] with higher AUPRC [0.21 (95% CI 0.10–0.32)]. Model 
performance was lower in L-loop transposition of the great arteries 
(Figure 3). Across all lesions with sufficient data available for comparison, 
AUROC and AUPRC trended higher for AI-ECG compared with LVEF 
(see Supplementary data online, Figure S4).

Given that conduction disturbances are also a marker of disease pro
gression in CHD,8 we also assessed model performance when stratifying 
by QRS duration and presence of complete right bundle branch block. 
In patients with QRS duration ≤ 120 ms, AUROC of 0.77 (95% CI 
0.75–0.80) and AUPRC of 0.14 (95% CI 0.12–0.16) were achieved. For 
QRS duration > 120 ms, AUROC of 0.76 (95% CI 0.72–0.80) and 
AUPRC of 0.20 (95% CI 0.15–0.24) were obtained. In patients with com
plete right bundle branch block, AUROC of 0.78 (95% CI 0.73–0.83) and 
AUPRC of 0.21 (95% CI 0.13–0.29) were achieved. In patients without 

complete right bundle branch block, AUROC of 0.79 (95% CI 0.77– 
0.81) and AUPRC of 0.18 (95% CI 0.15–0.21) were obtained.

Survival analysis
Longer-term survival was assessed when stratifying patients into low- 
(<threshold) or high-risk (≥threshold) groups based on AI-ECG 
predictions (Figure 4). When using a random ECG, there was 15-year 
survival of 96% and 80% for low- vs. high-risk ECGs, respectively. 
When using a random ECG, high-risk patients were 4.9 times (95% 
CI 4.3–5.6) more likely to experience mortality (P < .001). This phe
nomenon was more pronounced when using the last ECG, with 
15-year survival of 95% and 72% in low- and high-risk groups, respect
ively, and a hazard ratio of 7.2 (95% CI 6.3–8.3) (P < .001).

In the internal test cohort, the AI-ECG model predictions [c-index 
0.74 (95% CI 0.72–0.76)] outperformed QRS duration [c-index 0.52 
(95% CI 0.50–0.54)] and LVEF [c-index 0.64 (95% CI 0.60–0.68)] in 
Cox model survival discrimination (Table 2). The addition of age and/ 
or LVEF as predictors to AI-ECG provided no added value in the 
c-index (Table 2).

Lesion-specific survival analyses demonstrated effective risk stratifi
cation in nearly all lesions (Figure 5), including dextrocardia [hazard ratio 
2.4 (95% CI 1.1–5.3); P = .02; Supplementary data online, Figure S5), but 
not complete atrioventricular canal defects [hazard ratio 3.5 (95% CI 
0.8–15.8); P = .10; Supplementary data online, Figure S6].

Model explainability
The most salient features (Figure 6) of an ECG to predict 5-year mor
tality in the overall cohort include S waves (limb lead III and precordial 
leads V2, V3, and V6) and T waves (limb leads II and V6). High-risk fea
tures to predict 5-year mortality include wide QRS complexes with 
deep S waves and low-amplitude waveforms (Figure 6).

When performing saliency mapping and median waveform analysis 
within subgroups, lesion-specific high-risk signatures were identified 

Figure 1 Kaplan–Meier survival analysis of training and testing cohorts. (A) Kaplan–Meier curve survival analysis of training (green) and testing (red) 
cohorts demonstrates the large, diverse cohorts across the congenital heart disease lifespan. Lesion-specific survival curves for (B) left ventricular and 
(C ) right ventricular pathology are shown when pooling training and testing cohorts. Number at risk within each group inset below. CoA, coarctation of 
the aorta; DORV, double outlet right ventricle; HLHS, hypoplastic left heart syndrome; LV, left ventricular; PA, pulmonary atresia; RV, right ventricular; 
TAPVR, total anomalous pulmonary venous return; TGA, transposition of the great arteries; ToF, tetralogy of Fallot
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Figure 2 Electrocardiogram-based deep learning model performance. (A) Artificial intelligence-enhanced electrocardiogram model performance to 
predict 5-year mortality evaluated using a random (blue), last (orange), and first (green) electrocardiogram per patient. (B) Performance benchmarking 
of the random electrocardiogram (blue) to age at electrocardiogram (orange), QRS duration (green), QTc duration (red), and left ventricular ejection 
fraction (purple). (C ) Comparison of internal testing (blue) and temporal validation (orange) performance to predict 1-year mortality. Area under the 
receiver operating characteristic curve and area under the precision-recall curve metric values for each model and outcome are inset. Dotted line re
presents chance. 95% confidence intervals are shown using bootstrapping. AUROC, area under the receiver operating characteristic curve; AUPRC, 
area under the precision-recall curve; ECG, electrocardiogram; LVEF, left ventricular ejection fraction; PPV, positive predictive value
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(Figure 6). In cardiomyopathy, V2 and V3 were less salient than the 
overall cohort; however, high-risk features appeared similar to the 
overall cohort. In right-sided myopathy such as ToF, V6 was less salient 
than the overall cohort; in addition, while low-risk features included a 
right bundle branch block, high-risk features included QRS fragmenta
tion. In left-sided pathology such as hypoplastic left heart syndrome, sa
liency maps were more focused on the QRS complex compared with 
the overall cohort. High-risk features included tall and wide R waves 
in V1–3 with a deep S wave in II–III and lateral precordial leads.

Discussion
For several decades, risk stratification has been of great interest in the 
CHD field using conventional and artificial intelligence approaches.6,7,24

The ongoing challenge in developing robust risk prediction models in 
CHD has led to multiple recent calls for AI applications to improve 
risk stratification in CHD.6,7 In this work, we address this gap by devel
oping and validating the first (to our knowledge) ECG-based deep 
learning algorithm to predict mortality in children and adults with 
CHD. We demonstrate that AI-ECG can successfully predict 5-year 
mortality, outperforming conventional markers such as age, LVEF, 
and QRS duration. The encouraging performance when using the first 
available, the last available, or a random ECG per patient demonstrates 

the promise of our model to predict mortality during initial and follow- 
up assessments to aid in lifelong risk stratification. Model explainability 
analysis provides transparency and interpretability for clinicians and 
may help generate hypotheses for underlying myopathy ECG signatures 
predictive of mortality. Altogether, our findings demonstrate the prog
nostic value of AI-ECG in CHD across the lifespan, which may (i) en
hance current risk stratification strategies, (ii) prioritize patients for 
diagnostic studies and/or interventions, and (iii) facilitate improved ac
cess to care (Structured Graphical Abstract).

Conventional electrocardiogram 
predictors of mortality in congenital heart 
disease
There is a paucity of conventional ECG analyses to predict morbidity 
and mortality in patients with CHD. The majority of applications are 
in ToF: several studies have recognized severe QRS prolongation as a 
risk factor for mortality in this patient population.38 However, the sen
sitivity of QRS duration > 180 ms to predict mortality was <50% in re
cent studies.39 Subsequent work by Bokma et al.29 demonstrated QRS 
fragmentation—related to myocardial fibrosis and dysfunction—is su
perior to QRS duration in predicting mortality. QRS fragmentation has 
also been associated with mortality in cardiomyopathy.40 In addition, a 

Figure 3 Model performance in congenital heart disease subgroups. Forest plot showing artificial intelligence-enhanced electrocardiogram area under 
the area under the receiver operating characteristic curve (red) and area under the precision-recall curve (black) performance when stratifying by lesion 
when using a random (left), last (middle), and first (right) electrocardiogram. Area under the receiver operating characteristic curve and area under the 
precision-recall curve metric values for each model and outcome are inset. 95% confidence intervals are shown using bootstrapping. ASD, atrial septal 
defect; CoA, coarctation of the aorta; CAVC, complete atrioventricular canal defect; DORV, double outlet right ventricle; ECG, electrocardiogram; 
HLHS, hypoplastic left heart syndrome; PA, pulmonary atresia; ToF, tetralogy of Fallot; TAPVC, total anomalous pulmonary venous connection; 
TGA, transposition of the great arteries; VSD, ventricular septal defect
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longer QRS has been previously predictive of mortality in hypoplastic left 
heart syndrome,41 D-loop transposition of the great arteries,42 and 
Fontan circulation,43 all with limited performance.

This has motivated more recent efforts to incorporate imaging modal
ity data into risk prediction algorithms.44 However, even such algorithms 
continue to have suboptimal performance and are reliant on expensive 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Cox models on the internal test cohort incorporating artificial intelligence-enhanced electrocardiogram 
predictions

Cox model Variable z-score P-value c-index (95% CI)

Age only 8.4 <2e−16 0.58 (0.56–0.60)

QRS duration only 5.8 5e−9 0.52 (0.50–0.54)

LVEF only −11.5 <2e−16 0.64 (0.60–0.68)

AI-ECG only 15.2 <2e−16 0.74 (0.72–0.76)

Age ± LVEF 0.65 (0.61–0.69)

Age 7.0 3e−12

LVEF −10.3 <2e−16

Age ± AI-ECG 0.71 (0.69–0.73)

Age 6.7 2e−11

AI-ECG 14.0 <2e−16

LVEF ± AI-ECG 0.72 (0.70–0.74)

LVEF −6.4 2e−10

AI-ECG 10.9 <2e−16

Age ± LVEF ± AI-ECG 0.72 (0.70–0.74)

Age 6.0 2e−9

LVEF −5.7 1e−8

AI-ECG 10.2 <2e−16

AI-ECG, artificial intelligence-enhanced electrocardiogram; CI, confidence interval; LVEF, left ventricular ejection fraction.

Figure 4 Kaplan–Meier survival analysis based on artificial intelligence-enhanced electrocardiogram risk stratification. Kaplan–Meier curve survival 
analysis when stratifying patients as low- (blue) or high-risk (orange) based on artificial intelligence-enhanced electrocardiogram predictions using ran
dom (left), last (middle), or first (right) electrocardiogram per patient. Number at risk within each group inset below. Hazard ratio inset below (high- vs. 
low-risk group based on artificial intelligence-enhanced electrocardiogram predictions) with 95% confidence interval using Cox regression analysis. 
P-value statistic below based on log-rank testing. ECG, electrocardiogram; HR, hazard ratio
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modalities (e.g. cardiac magnetic resonance imaging) that require subspe
cialized expertise. As shown herein, AI-ECG provides an inexpensive, ubi
quitous alternative that is predictive across a wide range of lesions.

Clinical significance and implications
Imaging modalities (e.g. cardiac magnetic resonance and echocardiography) 
conventionally used to aid in risk stratification in CHD have practice limita
tions (time-intensive, resource-consuming, and need for subspecialist ex
pertise) that hinder its widespread use. In contrast, ECGs is rapid and 
cost-effective and can be conveniently acquired at every cardiology visit, 
which facilitates easier and more frequent use that may guide clinical 

decision-making. We envision this AI-ECG algorithm may serve as a 
screening or surveillance tool and potentially improve access to care.

Given the objective to risk stratify patients from a preventative lens, we 
opted to train and test using ECGs from cardiology clinic. In this setting, 
AI-ECGs could be of significant screening and surveillance value. As shown 
in Supplementary data online, Table S2, a NPV of 98% was achieved to pre
dict 5-year mortality, with 15-year survival of 96% for low-risk ECGs. To 
this end, as a screening tool, low-risk AI-ECG predictions may help reduce 
follow-up frequency, the need for non-invasive imaging, diagnostic cathe
terizations, or implantable cardioverter-defibrillators. On the other 
hand, given the 5-year mortality PPV of 12%, it may help identify high-risk 
patients requiring closer monitoring.

Figure 5 Lesion-specific Kaplan–Meier survival analysis based on artificial intelligence-enhanced electrocardiogram risk stratification. Lesion-specific 
Kaplan–Meier curve survival analysis when stratifying patients as low- (blue) or high-risk (orange) based on artificial intelligence-enhanced electrocar
diogram predictions. Hazard ratio inset below (high- vs. low-risk group based on artificial intelligence-enhanced electrocardiogram predictions) with 
95% confidence interval using Cox regression analysis. P-value statistic below based on log-rank testing. Initial sample size in each cohort inset. 
ASD, atrial septal defect; CoA, coarctation of the aorta; DORV, double outlet right ventricle; HR, hazard ratio; HLHS, hypoplastic left heart syndrome; 
PA, pulmonary atresia; ToF, tetralogy of Fallot; TAPVC, total anomalous pulmonary venous connection; TGA, transposition of the great arteries; VSD, 
ventricular septal defect
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As a surveillance tool, a congenital cardiologist could conceivably 
monitor AI-ECG predictions at each cardiology visit. Monitoring 
AI-ECG predictions over time may provide insight into responsiveness 
to interventions (e.g. pulmonary valve replacement in ToF) or inter- 
stage monitoring of single ventricle patients.

Finally, for low-resource settings with limited access to advanced 
modalities, this algorithm may help improve access to care. Notably, 
despite the majority of CHD patients being adults, approximately half 
remain without regional CHD services.45 This technology may there
fore contribute to the democratization of specialty expertise and cir
cumvent the requirement for specialized cardiac magnetic resonance 
knowledge to risk stratify certain lesions (e.g. ToF).

Significance of temporal validation
From 1990 (the first ECG available in this cohort) through today, CHD has 
rapidly evolved. For example, surgical and medical advances have contrib
uted to the nearly 40% decrease in CHD mortality from 1999 to 2017,46

with >97% of children with CHD expected to reach adulthood.47 From an 
institutional standpoint, the Boston Children’s Hospital volume and com
plexity have significantly increased (Table 1). Given the range of confound
ing factors that could affect mortality, we opted to perform temporal 
validation with reassuringly similar performance.

Artificial intelligence-enhanced 
electrocardiogram model insights gained
The overall CHD and cardiomyopathy cohorts had similar high-risk 
features, suggesting common final signatures on an ECG indicative of 
high-risk mortality. Indeed, both CHD and cardiomyopathy have non- 
trivial overlap, and both largely contribute to paediatric heart failure.48

The common features noted herein include wide QRS complexes with 

deep S waves and low-amplitude waveforms, which may correspond to 
heterogeneous slow activation of the myocardium due to scar and/or 
myocardial stress. In addition, select high-risk patterns were noted in 
each disease process. For example, QRS fragmentation was noted in 
high-risk ECGs for ToF (Figure 6). Future work is required to investigate 
the relation of these features with progressive cardiomyopathy and 
paediatric heart failure.

Finally, we note variation in model performance by disease subtype. 
Interestingly, effective risk stratification was achieved in a majority of 
diseases (including dextrocardia), but not complete atrioventricular ca
nal defects. The reasons for poor performance in this group are not 
readily apparent but may involve the high heterogeneity of this group 
given its association with heterotaxy syndrome and situs abnormalities, 
trisomy 21, and inherently abnormal QRS axis (superior axis deviation) 
compared with the rest of the cohort.

Limitations and future directions
There are several limitations of this work. First, although heart fail
ure is the most common cause of death in adult CHD,23 all-cause 
mortality rather than cardiac mortality was used for the primary 
outcome in this study. In addition, while all-cause mortality is 
routinely coded at our institution, it is conceivable that positive 
outcomes are undocumented. We attempted to mitigate this limi
tation in our binary outcome analysis by including only ECGs with 
mortality events within the outcome timeframe or documented 
follow-up after the outcome timeframe. Similarly, in our survival 
analysis, we censored at time of the last known follow-up. 
Nevertheless, future use of state or national death index database 
should be considered. Second, while several recent AI-ECG works 
also used all-cause mortality as the primary endpoint,14,15 similar 
clinically meaningful outcomes such as heart transplant are also of 

Figure 6 Explainability of artificial intelligence-enhanced electrocardiogram predictions. Visualization of median waveforms generated in each lead 
using electrocardiograms from the highest (red) and lowest (green) artificial intelligence-enhanced electrocardiogram predictions of the overall cohort, 
as well as cardiomyopathy, tetralogy of Fallot, and hypoplastic left heart syndrome subgroups. Saliency mapping demarcates regions of the electrocar
diogram waveform having greatest (dark blue) and least (light blue) influence on each outcome. Saliency was averaged over the highest predicted elec
trocardiograms for each outcome. HLHS, hypoplastic left heart syndrome; ToF, tetralogy of Fallot
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interest. Third, while temporal validation was achieved, it is of great 
interest to obtain external validation for each CHD lesion. Fourth, 
only one example of thresholding was used to evaluate model per
formance, as further consideration is required to weigh the impact 
of resultant false negatives (which may lead to clinical consequences 
of missed pathology) and false positives (which may lead to un
necessary extraneous testing), as well as optimally set thresholds 
across institutions. To this end, multicentre external validation to 
further refine thresholds for clinical implementation is warranted. 
Similarly, multicentre collaboration via federated learning49 may 
help improve training/testing sample sizes, which may further im
prove performance. Given our objective to develop an inexpensive 
and convenient risk stratification tool, only ECG inputs were uti
lized; nevertheless, multimodal inputs may lead to improved model 
performance (especially for complex lesions) requiring further in
vestigation.50 The limitations of saliency mapping must be noted.51

Lastly, diagnostic categories in this study are quite heterogeneous. 
For example, the cardiomyopathy category includes dilated, 
hypertrophic, and restrictive cardiomyopathy, among others. 
Similarly, multiple CHD diagnoses can occur simultaneously, such 
that patients can be assigned into multiple categories. In addition, 
the cohort includes patients with and without repairs for CHD 
lesions.

Future work therefore includes model refinement and external val
idation for each lesion of interest, multicentre collaboration, consider
ation of multimodal inputs, and prospective trials (to determine how to 
properly implement such tools to support clinical decision-making). 
Finally, we note that a recent randomized clinical trial implementing 
AI-ECG alerts led to decreased all-cause mortality in the general adult 
population.52 It is similarly of great interest to implement a similar study 
design in the distinct CHD population.

Conclusions
In conclusion, these findings demonstrate the promise of AI-ECG to in
expensively and conveniently risk stratify individuals with CHD across 
the lifespan. This tool may facilitate the prioritization of patients for fu
ture interventions/studies, provide meaningful insight into novel ECG 
waveforms suggestive of mortality, and potentially reduce disparities 
by improving access to care. Future multicentre collaboration and pro
spective trials are warranted.
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