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BACKGROUND Artificial intelligence–enhanced electrocardiogram (AI-ECG) analysis shows promise to detect biven-

tricular pathophysiology. However, AI-ECG analysis remains underexplored in congenital heart disease (CHD).

OBJECTIVES The purpose of this study was to develop and externally validate an AI-ECG model to predict cardio-

vascular magnetic resonance (CMR)-defined biventricular dysfunction/dilation in patients with CHD.

METHODS We trained (80%) and tested (20%) a convolutional neural network on paired ECG-CMRs (#30 days apart)

from patients with and without CHD to detect left ventricular (LV) dysfunction (ejection fraction #40%), RV dysfunction

(ejection fraction #35%), and LV and RV dilation (end-diastolic volume z-score $4). Performance was assessed during

internal testing and external validation on an outside health care system using area under receiver-operating curve

(AUROC) and area under precision recall curve.

RESULTS The internal and external cohorts comprised 8,584 ECG-CMR pairs (n ¼ 4,941; median CMR age 20.7 years)

and 909 ECG-CMR pairs (n ¼ 746; median CMR age 25.4 years), respectively. Model performance was similar for internal

testing (AUROC: LV dysfunction 0.87; LV dilation 0.86; RV dysfunction 0.88; RV dilation 0.81) and external validation

(AUROC: LV dysfunction 0.89; LV dilation 0.83; RV dysfunction 0.82; RV dilation 0.80). Model performance was lowest

in functionally single ventricle patients. Tetralogy of Fallot patients predicted to be at high risk of ventricular dysfunction

had lower survival (P < 0.001). Model explainability via saliency mapping revealed that lateral precordial leads influence

all outcome predictions, with high-risk features including QRS widening and T-wave inversions for RV dysfunction/

dilation.

CONCLUSIONS AI-ECG shows promise to predict biventricular dysfunction/dilation, which may help inform CMR timing

in CHD. (J Am Coll Cardiol 2024;84:815–828) © 2024 by the American College of Cardiology Foundation.
N 0735-1097/$36.00 https://doi.org/10.1016/j.jacc.2024.05.062
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ABBR EV I A T I ON S

AND ACRONYMS

AI-ECG = artificial intelligence-

enhanced electrocardiogram

AUPRC = area under the

precision-recall curve

AUROC = area under the

receiver operating curve

CHD = congenital heart disease

CMR = cardiovascular magnetic

resonance

ECG = electrocardiogram

EDV = end-diastolic volume

EF = ejection fraction

LV = left ventricle

RV = right ventricle

ToF = Tetralogy of Fallot
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P atients with congenital heart disease
(CHD) are a heterogeneous population
with complex anatomy and physi-

ology. In the current era, the majority survive
to adulthood.1 Noninvasive imaging plays a
central role in risk stratifying this growing
population and informing medical/surgical
interventions, with biventricular size and
function among the strongest predictors of
long-term mortality in a multitude of CHD le-
sions.2-4 For example, in adults with tetral-
ogy of Fallot (ToF), left ventricular (LV) and
right ventricular (RV) dysfunction are both
predictive of death and sustained ventricular
tachycardia.5
SEE PAGE 829
Cardiac magnetic resonance (CMR) imag-

ing has an established role in the lifelong manage-
ment of patients with CHD to accurately assess LV,
RV, and functional single ventricle size and ejection
fraction (EF), which are particularly more challenging
to measure by echocardiography. However, CMR has
practical limitations prohibiting its widespread use
including being time-, resource-, and cost-intensive,
making it of interest to develop a cheap and effec-
tive tool to help inform timing of CMR.

Electrocardiograms (ECGs) are a quick, ubiquitous,
and cost-effective tool used for cardiac screening of
adults and children. Artificial intelligence-enhanced
electrocardiogram (AI-ECG) algorithms reliably pre-
dict a range of cardiovascular phenotypes in the
general adult population, including biventricular
dilation and dysfunction.6-9 However, there remains
a paucity of AI-ECG applications for the CHD popu-
lation with distinct ECG characteristics attributed to
age, CHD lesion, and prior interventions.10,11 To our
knowledge, AI-ECG technology has yet to be applied
to predict the gold-standard CMR measurements that
congenital cardiologists rely on to risk stratify and
inform management of CHD patients.

In this study, our primary objective was to address
this gap by developing, internally testing, and exter-
nally validating an AI-ECG model to predict LV and
RV dysfunction and dilation in patients with and
without CHD (Central Illustration).

METHODS

INTERNAL STUDY POPULATION AND PATIENT

ASSIGNMENT. We utilized patient data from Boston
Children’s Hospital between 2002 and 2021. All CMR
studies with RV and LV EF percentage and end-
diastolic volume (EDV) z-scores were considered
eligible. LVEDV and RVEDV z-scores were calculated
using published equations by Alfakih et al12; patients
with body surface area <1.0 m2 were excluded given
the paucity of normative CMR data for this group,
as well as the phenomenon of heteroscedasticity
preventing extrapolation. Each qualifying CMR
event was paired with an ECG; only ECG-CMR
pairs #30 days apart without an intermediate cathe-
terization or surgery were included. In cases of mul-
tiple ECGs within this timeframe, only the ECG
closest in time to the CMR was included. ECG-CMR
pairs with ECGs failing to pass quality control (see
the Supplemental Methods for details) were removed.
The remaining ECG-CMR pairs were included as the
main internal cohort (Figure 1).

To assign patients into CHD subgroups, we utilized
our institutional Fyler coding system.13 The coding
system allows for identification of patients with spe-
cific structural diagnoses (eg, coarctation of the aorta,
ventricular septal defect, and so on) as well as clinical
diagnoses (eg, myocarditis, right heart failure, and so
on). Based on the primary underling cardiac diag-
nosis, patients were grouped into 4 categories:
1) functionally single ventricles at any stage of palli-
ation with reportable LV and RV function and size
(inclusive of hypoplastic left heart syndrome,
tricuspid atresia, double outlet LV, double inlet LV,
double outlet RV, double inlet RV; ie, functionally
single-ventricle patients without a secondary
ventricle were excluded); 2) RV at-risk including ToF,
right heart failure, right-dominant atrioventricular
canal defect, atrial septal defect, pulmonary atresia,
total anomalous pulmonary venous return, Ebstein
anomaly, and truncus arteriosus; 3) LV at-risk
including coarctation of the aorta, left heart failure,
myocardial infarction, left-dominant atrioventricular
canal defect, L- or D-loop transposition of the great
arteries, anomalous left coronary artery from the
pulmonary artery, cardiomyopathy, heart transplant,
ventricular septal defect, myocarditis, anemia, and
iron overload; and 4) other. Grouping was tiered, such
that if a patient met functionally single ventricle
criteria, the patient was excluded from the LV or RV
at-risk group. Next, if a patient met RV at-risk criteria,
the patient was excluded from the LV at-risk group.
Finally, if a patient did not meet any group criteria,
the patient was placed in the other group. Note the
other group includes non-CHD to reflect all in-
dications of CMR at our institution and diversify the
training set. Patient diagnoses within each subgroup
are shown in Supplemental Table 1.

Similar to prior work,14 a group stratified design
was implemented for partitioning of the main cohort.
ECG-CMR pairs for a given patient were restricted to
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CENTRAL ILLUSTRATION Artificial Intelligence-Enhanced Electrocardiography to Predict
Biventricular Size and Function
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An artificial intelligence (AI)-enhanced electrocardiography (ECG) algorithm trained on ECG- cardiovascular magnetic resonance (CMR) pairs at

Boston Children’s Hospital was predictive of right ventricular (RV) and left ventricular (LV) dysfunction and dilation in a congenital heart

disease cohort, with external validation and model explainability. EDV ¼ end-diastolic volume; EF ¼ ejection fraction.
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FIGURE 1 STROBE Diagram Showing Initial Patient Selection and the Final Cohort
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Filtering at each data processing stage is shown. Patient partitioning for training (80%) and testing (20%) is shown, with external validation

at Mount Sinai. CMR ¼ cardiovascular magnetic resonance; EDV ¼ end-diastolic volume; EF ¼ ejection fraction; LV ¼ left ventricle;

QC ¼ quality control; RV ¼ right ventricle.
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either training or testing data sets to minimize
leakage of ECG-CMR pair data. The patients were
randomly partitioned 80:20 into training and testing
data sets.

EXTERNAL STUDY POPULATION. The external vali-
dation cohort (Mount Sinai Hospital, New York, New
York, USA) had similar inclusion criteria such that
only ECG-CMR pairs #30 days apart without an in-
termediate procedure were included.

DATA RETRIEVAL, QUALITY CONTROL, AND DATA

PREPROCESSING. Data retrieval, quality control, and
data preprocessing is analogous to our previous
work14; for details, see the Supplemental Methods.

DEFINITION OF OUTCOMES. The individual out-
comes included greater than mild LV dysfunction
(LVEF #40%), RV dysfunction (RVEF #35%),
LV dilation (LVEDV z-score $4, corresponding to
121 mL/m2 in women and 141 mL/m2 in men), and RV
dilation (RVEDV z-score $4, corresponding to
130 mL/m2 in women and 143 mL/m2 in men). The
composite biventricular dysfunction outcome was
defined as LVEF #40% and RVEF #35%. The primary
outcomes were used to train and test the model used
herein. In a secondary RV volume-specific model,
individual outcomes included RVEDV z-score $4,
indexed RVEDV $160 mL/m2, and indexed
RVEDV $180 mL/m2.

As a secondary outcome analysis, we evaluated
time to all-cause mortality after CMR. When multiple
ECG-CMR pairs were available in a patient, a
randomly selected ECG-CMR pair was included for
survival analysis.

MODEL SELECTION, ARCHITECTURE, AND TRAINING. A
transfer learning approach was utilized for model
development. We started with model weights from
our recently developed AI-ECG model14 to predict left
ventricular dysfunction or remodeling in patients #18
years of age without major CHD, and then trained our
model on the aforementioned training set.

https://doi.org/10.1016/j.jacc.2024.05.062


TABLE 1 Baseline Characteristics of Internal Training and Testing Cohorts

Training (80%) Testing (20%)

Patient-level characteristics

Patients 3,954 987

Male 2,209 (56) 564 (57)

Death 175 (4.4) 43 (4.4)

Age of death, y 29.6 (20.7-45.2) 24.1 (18.3-43.2)

ECG-CMR pair grouping

Pairs 6,833 1,751

LV at-risk 2,120 (31) 519 (30)

RV at-risk 2,341 (34) 655 (37)

Functionally SV 666 (9.7) 156 (8.9)

Other 1,706 (25) 421 (24)

ECG-CMR pair characteristic

Pairs 6,833 1,751

Age at CMR, y 20.7 (15.5-30.4) 20.7 (15.6-29.6)

Heart rate, beats/min 71.0 (62.0-81.0) 70.0 (61.0-81.0)

QRS axis 76.0 (55.0-95.0) 74.0 (54.0-94.0)

T axis 57.0 (40.0-74.0) 59.0 (40.0-76.0)

P axis 47.0 (31.0-61.0) 47.0 (32.0-61.0)

PR interval, ms 152.0 (136.0-172.0) 154.0 (136.0-174.0)

QRS interval, ms 102.0 (90.0-132.0) 104.0 (90.0-134.0)

QT interval, ms 402.0 (376.0-430.0) 404.0 (378.0-434.0)

QTc interval, ms 435.0 (414.0-458.0) 435.0 (415.0-459.0)

LVEF, % 58.8 (54.5-63.6) 58.8 (54.5-63.2)

RVEF, % 54.1 (48.5-59.4) 54.2 (48.2-59.6)

LVEDV, mL 152.2 (121.2-193.4) 148.3 (118.8-189.1)

LVEDV z-score 0.6 (�0.4 to 1.9) 0.6 (�0.4 to 1.7)

RVEDV, mL 179.4 (137.0-229.7) 185.2 (139.3-230.5)

RVEDV z-score 1.5 (0.3-3.2) 1.7 (0.4-3.4)

ECG-CMR pair outcomes

Pairs 6,833 1,751

LVEF #40% (yes) 231 (3.4) 54 (3.1)

RVEF #35% (yes) 300 (4.4) 85 (4.9)

LVEDV z-score $4 566 (8.3) 112 (6.4)

RVEDV z-score $4 1,246 (18) 341 (19)

Values are n, n (%), or median (Q1-Q3).

CMR ¼ cardiovascular magnetic resonance; ECG ¼ electrocardiogram; EDV ¼ end-diastolic
volume; EF ¼ ejection fraction; LV ¼ left ventricular; RV ¼ right ventricular; SV ¼ single ventricle.
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The training set was further partitioned 95% for
training and 5% for validation to allow for hyper-
parameter tuning. Our convolutional neural network
used 12 � 2,048 ECG inputs with an architecture
inspired by the residual network (ie, including skip
connections) adapted for unidimensional signals.14,15

Network architecture is identical to our previous
work.14

Model hyperparameters were tuned by performing
a grid search on the training set over the following
values: kernel size [3, 9, 17], batch size [8, 32, 64], and
initial learning rate [0.01, 0.001, 0.0001]. The average
cross-entropy was minimized using the Adam opti-
mizer. We used maximum 150 epochs with early
stopping based on validation loss. The model with the
lowest validation loss during hyperparameter tuning
was selected as the final model (kernel size 17, batch
size 32, learning rate 0.001).
PERFORMANCE EVALUATION. Model performance
was evaluated only on the test group. To account for
class imbalance and capture model performance at
various thresholds, we evaluated the area under the
receiver operating curve (AUROC) and area under the
precision-recall (ie, positive predictive value-
sensitivity) curve (AUPRC). In addition, positive pre-
dictive value, negative predictive value, sensitivity,
and specificity were evaluated at the Youden index
threshold (ie, maximizing sensitivity and specificity)
in the training set. Metric CIs were computing using
1,000 bootstrap resamples.
SURVIVAL ANALYSIS. For mortality analysis,
Kaplan-Meier curves were constructed to visualize
survival probabilities of patients based on their AI-
ECG predictions. Patients were deemed high- or
low-risk using the Youden Index in the training
cohort as a cutoff threshold. Kaplan-Meier curves
were generated using a single random ECG-CMR pair
per patient. Patients were censored at the time last
known alive. Statistical comparison between Kaplan-
Meier curves was performed using the log-rank test.
MODEL EXPLAINABILITY. To explain model behavior
across all outcomes, the following analyses were
performed: 1) median waveform analysis; and 2) sa-
liency mapping. For details, see the Supplemental
Methods.
DATA AVAILABILITY AND SOFTWARE. Requests for
Boston Children’s Hospital data and related materials
will be internally reviewed to clarify if the request is
subject to intellectual property or confidentiality
constraints. Shareable data and materials will be
released under a material transfer agreement for
noncommercial research purposes. Institutional Re-
view Board approval was obtained by each respective
institution in this study. Programming code used
(Supplemental Methods) to perform the analyses are
available upon reasonable request.

RESULTS

PATIENT POPULATION BASELINE CHARACTERISTICS

AND OUTCOMES. Of the 18,526 ECG-CMR
pairs #30 days apart, 12,859 were without an inter-
mediate surgery or catheterization, with 8,701 ECGs
(n ¼ 4,993) meeting entry criteria and 8,584 ECGs
(n ¼ 4,941) passing quality control, thus forming the
main study cohort (Figure 1).

The training cohort comprised of 6,833 ECG-CMR
pairs (n ¼ 3,954; median age at CMR 20.7 years
[Q1-Q3: 15.5-30.4 years]; 56% men; 19% with ToF),
3.4% with LV dysfunction, 4.4% with RV dysfunction,
8.3% with LV dilation, and 18% with RV dilation

https://doi.org/10.1016/j.jacc.2024.05.062
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FIGURE 2 External Validation of Electrocardiogram-Based Deep Learning Model Performance
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FIGURE 2 Continued
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(Table 1). A majority of the patients were in the LV
(31%) and RV at-risk groups (34%), followed by the
other (25%) and single-ventricle (10%) groups. When
stratifying by group, there were notable differences in
ECG, CMR, and outcome characteristics
(Supplemental Table 2). Further details on de-
mographics, ECG, and CMR characteristics are sum-
marized in Table 1, with similar baseline
characteristics in the internal test group. Within the
training and test cohorts, 4.4% of patients died at a
median age of 29.6 years (Q1-Q3: 20.7-45.2 years) and
24.1 years (Q1-Q3: 18.3-43.2 years), respectively.

The external cohort comprised of 909 ECG-CMR
pairs (746 patients; median age at CMR 25.4 years
[Q1-Q3: 15.8-32.3 years]; 56% men; 15% with ToF),
4.1% with LV dysfunction, 7.2% with RV dysfunction,
5.5% with LV dilation, and 14% with RV dilation.

AI-ECG MODEL PERFORMANCE. Model performance
(Figure 2, Table 2) was similar between internal
testing (LV dysfunction: AUROC: 0.87, AUPRC: 0.24;
LV dilation: AUROC: 0.86, AUPRC: 0.36; RV dysfunc-
tion: AUROC: 0.88, AUPRC: 0.35; RV dilation: AUROC:
0.81, AUPRC: 0.50) and external cohort (LV dysfunc-
tion: AUROC: 0.89, AUPRC: 0.35; LV dilation: AUROC:
0.83, AUPRC: 0.29; RV dysfunction: AUROC: 0.82,
AUPRC: 0.31; RV dilation: AUROC: 0.80, AUPRC:
0.44). When looking at single random ECG-CMR pairs
per patient, model performance remained similar
(Supplemental Figure 1). Model performance was
comparable in detecting biventricular dysfunction
(Supplemental Figure 2).

Model performance metrics were subsequently
evaluated (Table 2) at the Youden index threshold in
the training set. LVEF, LV dilation, and RV dilation
had similar sensitivities (ranging from 0.78-0.94)
across internal test and external cohorts. In contrast,
for RVEF, the sensitivity was markedly higher in the
internal test cohort compared with the external vali-
dation cohort (0.83 vs 0.53, respectively).

SUBGROUP ANALYSIS. We next examined AI-ECG
performance when stratifying by age and sex
(Figure 3) (for full model performance metric details,
see Supplemental Tables 3 and 4). There was no clear
relationship between age and model performance.
Performance was higher for men than women for
RVEF and RVEDV.

We similarly performed subgroup analysis by CMR
grouping (Figure 3, Supplemental Table 5). For LVEF,
the LV at-risk group performed better than the RV at-
risk group, whereas for LVEDV, the RV at-risk group
performed better than the LV at-risk group. Across all
outcomes, the single-ventricle group had the lowest
performance. For RVEDV, performance was worse for
the RV at-risk group than the LV at-risk group. Overall
model performance was broadly insensitive to
exclusion of common CHD lesions in this cohort
(Supplemental Figure 3).

Finally, we assessed a specific CHD lesion with a
common CMR indication—ToF. ToF performance was
highly representative of the encompassing RV at-risk
group (Supplemental Figure 4), with notably poor RV
dilation performance. As shown in Supplemental
Figure 5, the RV at-risk group RV dilation perfor-
mance improved when excluding ToF (but not other
RV at-risk CHD lesions), highlighting the challenge in
predicting RVEDV z-score $4 for ToF specifically.
When using a secondary RV volume-specific model,
performance in ToF remained poor for RVEDV
z-score $4 (AUROC: 0.65), but was improved for
higher and more clinically relevant cutoffs such as
indexed RVEDV $160 mL/m2 (AUROC: 0.76) and
$180 mL/m2 (AUROC 0.78) (Supplemental Figure 6).

SURVIVAL ANALYSIS. In the testing cohort, median
follow-up after CMR was 6.4 years (Q1-Q3: 3.2-10.7
years), with 4.4% of patients experiencing all-cause
mortality at a median age of 24.1 years (Q1-Q3: 18.3-
43.2 years). Given the established use of CMR to risk-
stratify patients with ToF, survival after CMR was
assessed in this cohort when stratified as high- or low-
risk based on AI-ECG predictions of LV or RV
dysfunction. There was significantly lower survival in
ToF patients (Figure 4) with LV or RV dysfunction
based on AI-ECG predictions. Similar trends were
identified for the overall cohort, LV at-risk patients,
and RV at-risk patients (Supplemental Figure 7).

SALIENCY MAPPING. In an attempt to interpret the
model, we performed saliency mapping and median
waveform analysis. As shown in Figure 5, ECGs at high
risk of LV dysfunction had lower amplitude and
widened QRS complexes with inverted T waves in V4

to V6. Saliency mapping demonstrated that the most
influential segments were QRS complexes and T
waves in V4 and V6. For LV dilation, saliency mapping
demonstrated that the most influential segments
were QRS complexes of lateral precordial leads, with
high-risk ECGs having higher amplitude QRS com-
plexes in these regions.

ECGs at high-risk of RV dysfunction had widened
QRS complexes in V1 to V4 with inverted T waves in
all precordial leads. Saliency mapping suggested the
most influential segments were QRS complexes in V4

and V6, and T waves in V4. Finally, ECGs at high risk
of RV dilation had similar patterns and saliency maps
compared to RV dysfunction. More specifically, they
had widened QRS complexes with inverted T-wave in
V1 to V4. In addition, saliency mapping demonstrates
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TABLE 2 Model Performance Metrics Across Internal and External Cohorts

Internal Testing Mount Sinai Hospital

LVEF #40%

AUROC 0.87 (0.82-0.91) 0.89 (0.84-0.93)

AUPRC 0.24 (0.16-0.35) 0.35 (0.22-0.48)

Sensitivity 0.78 (0.67-0.87) 0.92 (0.82-1.0)

Specificity 0.81 (0.79-0.83) 0.78 (0.75-0.81)

Negative predictive value, % 99.1 (98.7-99.5) 99.5 (99.0-100)

Positive predictive value, % 11.6 (9.8-13.4) 15.9 (13.9-18.0)

Predicted negative, % 79.4 (77.8-81.1) 74.6 (71.8-77.4)

LVEDV z-score $4

AUROC 0.86 (0.83-0.89) 0.83 (0.78-0.88)

AUPRC 0.36 (0.29-0.45) 0.29 (0.19-0.41)

Sensitivity 0.82 (0.75-0.88) 0.94 (0.86-1.0)

Specificity 0.76 (0.74-0.78) 0.39 (0.36-0.43)

Negative predictive value, % 98.4 (97.8-99.0) 99.1 (97.9-100)

Positive predictive value, % 19.2 (17.3-21.1) 8.6 (7.8-9.3)

Predicted negative, % 72.6 (70.6-74.5) 37.5 (34.4-40.8)

RVEF #35%

AUROC 0.88 (0.85-0.92) 0.82 (0.77-0.87)

AUPRC 0.35 (0.26-0.45) 0.31 (0.21-0.41)

Sensitivity 0.83 (0.75-0.92) 0.53 (0.42-0.66)

Specificity 0.79 (0.77-0.81) 0.85 (0.83-0.88)

Negative predictive value, % 98.9 (98.4-99.5) 96.0 (95.1-97.1)

Positive predictive value, % 17.2 (15.3-19.2) 21.4 (16.8-26.5)

Predicted negative, % 76.4 (74.5-78.2) 82.6 (80.2-84.8)

RVEDV z-score $4

AUROC 0.81 (0.78-0.83) 0.80 (0.76-0.84)

AUPRC 0.50 (0.45-0.55) 0.44 (0.37-0.52)

Sensitivity 0.78 (0.74-0.82) 0.91 (0.85-0.95)

Specificity 0.69 (0.67-0.72) 0.46 (0.42-0.49)

Negative predictive value, % 92.9 (91.5-94.1) 97.0 (95.1-98.4)

Positive predictive value, % 38.1 (35.9-40.5) 20.8 (19.2-22.1)

Predicted negative, % 60.2 (58.0-62.1) 40.6 (37.3-43.5)

Values are median (95% CI).

AUPRC ¼ area under the precision-recall curve; AUROC ¼ area under the receiver operating curve; other
abbreviations as in Table 1.
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the most influential segments were QRS complexes in
V4 and V6, and T waves in nearly all precordial leads
(ie, except V5).

DISCUSSION

In this work, we developed and externally validated
(to our knowledge) the first AI-ECG algorithm to
predict LV and RV dysfunction and dilation using
gold standard CMR metrics obtained from a hetero-
geneous cohort of pediatric and adult patients pre-
dominantly with CHD (Central Illustration). The model
achieved similar performance during internal testing
and external validation on diverse cohorts despite
different baseline characteristics, suggesting model
robustness and generalizability. Performance was
lesion-dependent and consistently lowest in func-
tionally single ventricles, highlighting the inherent
complexities of CHD not addressed in AI-ECG algo-
rithms to date. Importantly, we showed the model
can be refined to predict outcomes that are integral to
clinical decision-making in this at-risk population
(Supplemental Figure 6). Patients identified at high-
risk of ventricular dysfunction had lower survival in
the ToF cohort, suggesting potential prognostic
value. Finally, saliency mapping and median wave-
form analysis provided a framework to develop new
insights into clinically relevant ECG characteristics
predictive of LV and RV dysfunction/dilation. Alto-
gether, these findings demonstrate the promise of AI-
ECG to inexpensively screen for biventricular
dysfunction/dilation in CHD, which may facilitate
improved access to care and help prioritize patients
for further imaging studies and/or interventions.

CMR IN CHD. The indications for CMR in CHD are
broad and include evaluating anatomy, physiology/
hemodynamics (eg, pulmonary/systemic flow, collat-
eral flow evaluation), myocardial scarring, valve
function, and biventricular size/function.

The known limitations of echocardiography for
pediatric and adult patients to assess the RV8,16,17

makes referral for right-sided lesions a common
indication for CMR. Common right-sided lesions
include ToF, pulmonary atresia, atrial septal defects,
and Ebstein anomaly. As these patients age, they are
at increased risk of RV myopathy, which can lead to
significant morbidity and mortality.5

Lesion-specific guidelines provide recommended
CMR surveillance frequency to help guide the timing
of interventions and heart failure management.18 For
example, in adults with ToF at risk of pulmonary
regurgitation and RV or LV dilation/dysfunction,
guidelines recommend CMR surveillance every 12 to
36 months.18 In ToF, biventricular function and size
inform the need for pulmonary valve replacement,
with consensus criteria for pulmonary valve replace-
ment dependent on RVEDV, RVEF, and LVEF.19

Although CMR carries these tremendous benefits
specific to the pediatric cardiology population, it is
limited by being time-, resource-, and cost-intensive,
making it of interest to develop a convenient, stan-
dardized, and inexpensive tool to help inform timing
of CMR.

AI-ECG CLINICAL SIGNIFICANCE AND IMPLICATIONS.

Compared with CMR, AI-ECG has several advantages:
1) it is rapid, conveniently obtained, and cost-
effective; 2) it is standardized, without being subject
to inter-rater and intrarater variability; and 3) it is
safe and there are no practical limitations hindering
use. In this study, we utilized AI-ECG to infer only a
portion of measurements obtained from CMR (ie,
biventricular size/function). We envision the clinical
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FIGURE 3 Subgroup Model Performance
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implementation of this AI-ECG algorithm may serve
as a screening tool to inform timing of CMR, as well as
to improve access to care.

As a screening tool, this algorithm may have eco-
nomic value and lower the costs associated with care
of individuals with CHD20 by reducing the frequency
of noninvasive imaging (eg, echocardiography, CMR),
which may even reduce the frequency of diagnostic
and/or interventional catheterizations. As a thought
example, the model has the capacity to achieve a
negative predictive value of 99.1% for LV dysfunction
in the overall internal test cohort and 99.5% exter-
nally, with the potential to reduce CMRs for LV size/
function indications by 75% to 79%. For RV dysfunc-
tion, negative predictive values of 98.9% and 96.0%
were achieved, respectively, with the potential to
reduce CMRs for RV size/function indications by 76%
to 83%. Finally, in the case of the ToF subgroup, the
secondary RV dilation-specific model has the poten-
tial to reduce CMRs for RV size indications by 28% at a
90% sensitivity to predict RVEDV index of 160 mL/m2

(ie, one of the proactive criteria for pulmonary valve
replacement in ToF).19 On the other hand, the AI-ECG
predictions may also help identify high-risk patients
at an earlier age who will require closer monitoring
and/or earlier CMR studies.
Finally, this algorithm may help improve access to
care, especially in centers/areas without reliable ac-
cess to CMR (and thus limited measurements of RV
size/function). Currently, approximately two-thirds
of the world population does not have access to
specialized CHD services, with the majority of CHD
patients now adults.21 This democratization of spe-
cialty expertise may similarly be valuable for hospi-
tals with low pediatric volumes and/or limited
pediatric cardiology experience.
MODEL EXPLAINABILITY AND AI-ECG INSIGHTS.

Model explainability increases the transparency/
interpretability of models for clinicians and may aid
clinicians in identifying ECG signatures resembling
myopathy. High-risk features for RV dysfunction and
dilation include widened QRS complexes and inver-
ted T waves in precordial leads. These findings differ
from recent adult AI-ECG saliency maps of RV pa-
thology,8,9 highlighting the unique considerations in
CHD. Notably, widened QRS complexes—especially in
ToF—are associated with morbidity, mortality, and RV
pathology.22-24 Salient features identified for LVEF
are similar to our previous work14 in children without
major CHD and adults with structurally normal
hearts; however, unique high-risk features were
identified including reduced QRS amplitude and



FIGURE 4 Survival Analysis in Tetralogy of Fallot Based on AI-ECG Predictions
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widened QRS intervals, similarly demonstrating that
the distinct ECG features in a CHD cohort require
tailored AI-ECG models. Interestingly, LVEDV sa-
liency maps and high-risk features are more similar to
our previous work.14

Several insights into CHD-specific AI-ECG chal-
lenges were also gained by performing subgroup
analysis. Most notably, there was poorer performance
for RVEDV z-score $4 for ToF (Supplemental
Figure 4), and all outcomes for functionally single
ventricles (Figure 3). In the case of ToF, we hypoth-
esize the high prevalence of outcomes with
frequently wide QRS duration and right bundle
branch block at baseline led to subtle ECG changes
that were not easily identified by the model; in
contrast, at a higher RVEDV cutoff (eg, RVEDV
index $160 or $180 mL/m2), performance was similar
to the overall model in predicting RVEDV z-score $4,
possibly explained by more obvious ECG changes at
this extreme. In the case of single ventricles, we
hypothesize there are several attributable factors
for poorer performance, including the following:
1) wide range of distinct anatomic/physiologic
considerations; 2) unique postoperative physiology
such as septating 1 morphologic ventricle (eg, double
inlet left ventricle) into 2; and 3) relatively smaller
sample sizes in this extremely heterogeneous subset
of patients.
STUDY LIMITATIONS AND FUTURE DIRECTIONS.

First, these findings are limited to patients routinely
referred for CMR with a measurable secondary
contributing chamber. In addition, the requirement of
CMR data excludes patients with pacemakers and
defibrillators. Future avenues to mitigate this limita-
tion include obtaining biventricular function/size
data from cardiac computed tomography or
3-dimensional echocardiography. Patients with body
surface area <1 m2 were excluded, thereby excluding
young children. Second, a referral bias for CMR
testing may lead to over-representation of certain
lesions and sicker patients in the cohort, although
performance was consistent across multiple care
centers with different patient populations. Third,
although external validation was achieved, it is of
great interest to obtain external validation for each
CHD lesion, and across multiple institutions globally
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FIGURE 5 Explainability of Artificial Intelligence–Enhanced Electrocardiogram Outcome Predictions
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to capture more diversity. Fourth, only 1 example of
thresholding (ie, maximal sensitivity and specificity)
was used in evaluation of model performance, as
further consideration (eg, weighted loss function) is
required to weigh the impact of resultant false posi-
tives (which may lead to unnecessary referrals to
CMR) and false negatives (which may lead to clinical
consequences of missed ventricular pathophysi-
ology), as well as optimally set thresholds across in-
stitutions. Further multicenter external validation is
warranted to refine thresholds for clinical imple-
mentation. Similarly, multicenter collaboration via
federated learning25 may help improve training/
testing sample sizes and enhance diversity, which
may further improve performance within each spe-
cific lesion (eg, single-ventricle patients) as well as
outcome (eg, RV dilation in ToF). In addition, only
ECG inputs were utilized; multimodal inputs may
lead to improved model performance, especially for
the complex/heterogeneous single ventricle sub-
group.26 Until then, our model is likely best served for
patients without functionally single ventricles. Fifth,
discrete cutoffs corresponding to $ moderate
dysfunction or dilation were selected, although other
cutoffs could have been considered as truth labels.
Although all-cause mortality is routinely coded
within our database, it is possible that positive cases
are undocumented for our survival analyses. Further
assessment of prognostic value is needed across a
range of other individual CHD lesions. Although sa-
liency mapping provides insight into model behavior,
its limitations must be noted27; other methodologies
such as layer-wise relevance propagation28 may be
considered for ongoing efforts to enhance trans-
parency and build clinician acceptance. Last, the
diagnostic categories in this study are quite hetero-
geneous, with grouping choices performed using
clinical experience.



PERSPECTIVES

COMPETENCY IN PATIENT CARE AND PROCEDURAL

SKILLS: AI-ECG shows promise to predict LV and RV dysfunction

and dilation and mortality in patients with congenital and ac-

quired heart disease.

TRANSLATIONAL OUTLOOK: Further studies are needed to

evaluate the utility of AI-ECG to guide timing of advanced im-

aging modalities like CMR in patients with acquired and

congenital heart disease.
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CONCLUSIONS

Our findings demonstrate the promise of AI-ECG to
inexpensively screen for and/or predict biventricular
dysfunction and dilation in patients with and without
CHD as defined by CMR metrics. This tool may facil-
itate prioritization of patients for future in-
terventions/imaging studies, decrease costs by
reducing the frequency of echocardiograms and
CMRs, provide meaningful insight into novel ECG
waveforms suggestive of biventricular dysfunction/
dilation, and potentially reduce disparities by
improving access to care. Future multicenter collab-
oration and prospective trials are warranted.
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