
Learning feature spaces for regression with genetic
programming

William La Cava, Jason H. Moore
University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA

Abstract

Genetic programming has found recent success as a tool for learning sets of features for regression

and classification. Multidimensional genetic programming is a useful variant of genetic

programming for this task because it represents candidate solutions as sets of programs. These sets

of programs expose additional information that can be exploited for building block identification.

In this work, we discuss this architecture and others in terms of their propensity for allowing

heuristic search to utilize information during the evolutionary process. We investigate methods for

biasing the components of programs that are promoted in order to guide search towards useful and

complementary feature spaces. We study two main approaches: 1) the introduction of new

objectives and 2) the use of specialized semantic variation operators. We find that a semantic

crossover operator based on stagewise regression leads to significant improvements on a set of

regression problems. The inclusion of semantic crossover produces state-of-the-art results in a

large benchmark study of open-source regression problems in comparison to several state-of-the-

art machine learning approaches and other genetic programming frameworks. Finally, we look at

the collinearity and complexity of the data representations produced by different methods, in order

to assess whether relevant, concise, and independent factors of variation can be produced in

application.

Keywords

representation learning; feature construction; variation; regression

1 Introduction

Genetic programming (GP) is a method that attempts to solve problems by identifying and

integrating the components of programs that contribute to good solutions. When applied to

classification and regression problems, the components of programs, i.e. its building blocks,

Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-
terms-v1

lacava@upenn.edu.

Publisher's Disclaimer: This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that has been
accepted for publication but has not been copyedited or corrected. The official version of record that is published in the journal is kept
up to date and so may therefore differ from this version.
7Supplementary Material
The experiments were conducted in Python and available from http://github.com/lacava/gpem_2019. The FEAT codebase can be
accessed at http://github.com/lacava/feat.

HHS Public Access
Author manuscript
Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

Published in final edited form as:
Genet Program Evolvable Mach. 2020 September ; 21(3): 433–467. doi:10.1007/s10710-020-09383-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.springer.com/aam-terms-v1
https://www.springer.com/aam-terms-v1
http://github.com/lacava/gpem_2019
http://github.com/lacava/feat

are analogous to engineered features. Because of this, we expect GP solutions to

classification and regression problems to contain building blocks that explain the underlying

factors of variation producing the observed response that is modelled. In the broader

machine learning (ML) community, automatic engineering of feature spaces is referred to as

representation learning [4] Representation learning is a fundamental challenge in ML due to

its computational complexity and the importance of data representation to the quality of

models that can be trained. Our interest here is a variant of GP we refer to as

multidimensional GP, i.e. MGP. MGP makes the relationship between building block

discovery and representation learning explicit by optimizing a set of programs, each of

which is an independent feature in the ML model. In this paper we discuss why the MGP

architecture is suited to the task of representation learning, and study several techniques for

improving the quality of data representations that MGP can learn.

In order to assess the quality of data representations, we first must establish a notion of what

makes a representation good. First and foremost, a good representation allows a model to be

trained that generalizes to unseen data better than a model trained directly on the raw

attributes. Second, a good representation identifies independent components of variation in

the data that cause the process response. Third, an ideal representation is succinct to aid in

interpretation and intelligibility. Ideally, a representation only has as many features as there

are independent factors controlling the process. Both the methods developed in this paper

and the related discussion are centered around these three motivations.

The paper summarizes and extends our previous work [46, 44] in which we proposed and

developed a multidimensional GP framework called the Feature Engineering Automation

Tool (FEAT). The paper is organized as follows. First we present a brief background on the

many methods that have been proposed to apply GP to feature construction / representation

learning, focusing on those techniques that use ML as a heuristic for identifying and

promoting building blocks. We discuss different architectures that motivate our focus on

MGP. We consider FEAT in the context of related GP and neural network methods. In

Section 3 we propose a set of methods hypothesized to improve our ability to identify

accurate, succinct and disentangled representations. These methods consist of new multi-

objective approaches as well as new semantic crossover operators. We conduct a series of

experiments within this framework to study the effect of these methods on representation

quality. We conduct an experiment at first on eight regression problems, considering full

hyperparameter tuning, and analyze the representations that are produced with and without

the new crossover methods. Finally, we benchmark the new methods against many ML and

GP methods on more than 100 open source regression problems. We find that the new

methods of crossover lead to state-of-the-art results for regression. We discuss the

implications of these results and offer viewpoints for further analysis in the conclusions.

2 Background

The GP community has long been interested in feature construction, and it has been studied

with various architectures. In fact, if the goal is to identify a single feature (or multiple

features in the multiclass case [58]), GP can be applied directly without major changes [55].

These approaches make use of information-theoretic measures to estimate how good a

La Cava and Moore Page 2

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

program is likely to be as a feature in a larger model. Despite requiring minimal changes to

GP’s methodology, the optimization of single features lacks the ability to control for the

multivariate context in which they are typically used.

An alternative approach that has been studied is to treat each individual in the population as

a feature, and to optimize an ensemble model of the entire population [12, 2, 1, 52, 42, 43].

With this approach, only a single regression model must be trained per generation, which

demands minimal overhead. However, it is not well understood how to properly select and

vary the features evolved by such a process. Since each individual is a feature, its fitness

depends heavily on the current population. Furthermore, a desirable set of features should be

orthogonal to each other so that the representation is well-conditioned; in contrast,

convergent evolutionary processes aim to make each individual, i.e. feature, the same. To

overcome issues of collinearity and a convergent search process, the following ideas have

been proposed. In evolutionary feature synthesis (EFS) [2], features are selected

proportionally to their coefficient in a regularized linear model; in order to prevent

multicollinearity, correlation thresholds are implemented during variation to keep children

different from their parents. In the feature engineering wrapper (FEW) [43, 42],

multicollinearity is selected against by using a survival version of ϵ-lexicase selection to

choose features. In Kaizen GP [12, 52], individuals are only added to the model if they pass

a significance test, in a hill climbing fashion. Another option is to not use an evolutionary

updating scheme at all, but rather to create a large set of random features and fit an ML

model to this, as in Fast Function Extraction (FFX) [50]. More recently, Vanneschi et. al.

explored one step linear combinations of random programs [78], experimentally showing

that they often lead to overfitting.

Rather than building a model from the entire population, one could apply an ML method to

the entire program trace as a means of identifying building blocks [38]. Multiple regression

GP (MRGP) [1] defines a program’s behavior as the Lasso [76] estimate generated over the

entire program’s trace. One downside of this approach is the likely presence of highly

correlated features in the program trace, leading to an ill-conditioned regression matrix. In a

similar vein to MRGP, Behavioral GP [39] extracts information from the entire program

trace, this time using a decision tree algorithm to identify important building blocks, which

are stored in an archive for re-use. In both algorithms, the key insight is to use ML with

program traces to undo the complex masking effect that program execution has on the

behavior of building blocks that are downstream from other operations in the program (for

further discussion on the topic of program traces see [37]).

The multidimensional framework used by our studied approach, MGP, is in some sense in

between the ensemble techniques and the program trace techniques described above.

Individuals are represented as sets of separate subprograms, usually trees. Unlike

population-wide models, the fitness of each individual is directly related to its model

predictions, and individuals in the population benefit from typical evolutionary optimization

processes. Unlike program trace-based methods, by using multi-output individuals, MGP

exposes independent components of the total program behavior to the ML process that

produces the model. As a result, building blocks are easier to isolate and share among the

population in direct ways.

La Cava and Moore Page 3

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Examples of MGP include Krawiec’s method [36], multigene GP [68, 69, 22], M2GP [31],

M3GP [56], e-M3GP [70], M4GP [45], and FEAT [46]. In all of these methods, individuals

in the population produce a set of corresponding outputs that are then fed into a

deterministic ML method to produce the program’s regression or classification estimates. In

the case of M2GP, M3GP, and M4GP, classification proceeds using a nearest centroid

classifier [77], whereas linear regression methods are used for regression with M3GP [57]

and FEAT.

Although a number of methods have been proposed in the MGP paradigm, they have not

made much use of the semantics of independent building blocks in each program that this

architecture creates. An exception is our work on FEAT [46, 44], in which we use the

coefficient magnitude to weight probabilities of mutation. In our first study on FEAT [46],

we proposed using multiple objectives to leverage the architecture of MGP to a larger degree

than in previous studies. In our second study [44], we looked at semantic variation operators

to achieve the same goal. The main contributions of this paper are 1) to summarize the

proposed methods and findings of previous papers, 2) extend the analysis and description of

FEAT, and 3) empirically compare all the variants of FEAT that have been proposed to each

other, and to state-of-the-art GP and ML methods.

3 Methods

The goal of regression is to build a predictive model y(x) using N paired examples

T = xi, yi i = 1
N . The regression model y(x) associates the inputs x ∈ ℝd with a real-valued

output y ∈ ℝ. The goal of feature engineering / representation learning is to find a new

representation of x via a m-dimensional feature mapping ϕ(x):ℝd ℝm, such that the model

y(ϕ(x)):ℝm ℝ outperforms the model y(x) by some pre-defined metric.

In MGP, each individual in the population is a candidate representation, ϕ(x), consisting of a

list of programs [ϕ1, … , ϕm]. As an example, the individual

+ x1 x2 , cos x3 , exp cube x1

would encode a representation with three features: (x1 + x2), cos(x3), and exp x1
3 .

Throughout the paper, we refer to these subprograms ϕ as features, and use the word

attribute to refer to the independent variables in x.

MGP methods share this representation in common, and differ in terms of 1) the ML method

used to generate the model prediction, i.e. y(ϕ); 2) the crossover and mutation operators

used; 3) the treatment of internal program weights; and 3) the selection process used.

We study a recent MGP method named FEAT [46], in which candidate features are

parameterized by weights, θ, and used to fit a linear model

La Cava and Moore Page 4

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

y = ∑
i = 1

m
βiϕi(x, θ) (1)

The coefficients [β1, … , βm] are determined using ridge regression [29]. Note that each ϕ is

normalized to zero mean, unit variance before ridge regression is applied. The fitness of

each individual in FEAT is its mean squared error (MSE) on the training set.

FEAT constructs trees from elementary boolean- and continuous-valued functions and

literals (see Table 1). FEAT differs from traditional symbolic regression (SR) which treats

the parameters θ as leaves. Instead, these weights are attached to the edges of all

differentiable operators and updated each generation via gradient descent (see Fig. 1).

In Fig. 2 we show the execution steps involved in FEAT, described here. FEAT uses a typical

μ + λ evolutionary updating scheme, where μ = λ = P. The method optimizes a population

of potential representations, ℕ = n1…nP , where n is an “individual” in the population,

iterating through these steps:

1. Fit a linear model y = xTβ . Create an initial population ℕ consisting of this initial

representation, ϕ = [x1, … , xd], along with P – 1 randomly generated

representations. To initialize a random representation, a number of features (m)

is chosen uniform-randomly from a user-specified max dimensionality. For each

feature, the well-known “grow” method is used to build a program, with one

notable change: the leaves of each program are sampled from [x1, … , xd]

proportionally to β . See Section 3.1 for more details.

2. While the stop criterion is not met:

a. Select parents ℙ ⊆ ℕ using a selection algorithm (see Section 3.3).

b. Apply variation operators to parents to generate P offspring O;

ℕ = ℕ ∪ ℚ (see Section 3.2).

c. Reduce ℕ to P individuals using a survival algorithm (see Section 3.3).

3. Select and return n ∈ ℕ with the lowest error on a hold-out validation set.

Individuals are evaluated using an initial forward pass, after which each representation is

used to fit a linear model (Eqn. 1) using ridge regression [29]. The weights of the

differentiable features in the representation are then updated using stochastic gradient

descent.

In the following sections, we describe the specific components of FEAT, including the

feedback mechanism, variation, and the selection and survival algorithms. We also present

the variations of these methods that are the subject of experiments later in the paper.

La Cava and Moore Page 5

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.1 Feedback

In order to promote building blocks, FEAT uses feedback from the ML process to bias the

variation step. In a nutshell, the probability of a feature in ϕ being mutated or replaced by

crossover is inversely related the magnitude of its coefficient β in Eqn. 1. Let

βi(n) = |βi|/∑i
m |βi|. The normalized coefficient magnitudes β ∈ [0, 1] are to used define

softmax-normalized probabilities. The probability of mutation for feature i in program n is

denoted P Mi(n), and defined as follows:

si(n) = exp 1 − βi /∑
i

m
exp 1 − βi

PMi(n) = γsi(n) + (1 − γ) 1
m (2)

Here, γ is a parameter that controls the amount of feedback from the weights that is used to

bias the selection of feature i for mutation. When γ is zero, the 1/m term in Eqn. 2 gives

uniform mutation probability across features. In our experiments, we tune γ, and also test

whether the softmax normalization of si(n) is useful.

3.2 Variation

During variation, the representations are perturbed using a set of mutation and crossover

methods. The baseline version of FEAT chooses among 6 variation operators that are as

follows.

• Point mutation changes a node type to a random one with matching output type

and arity.

• Insert mutation replaces a node with a randomly generated subtree of depth 1.

• Delete mutation removes a feature or replaces a sub-program with an input node,

with equal probability.

• Insert/Delete dimension adds or removes a new feature.

• Sub-tree crossover replaces a sub-tree from one parent with the sub-tree of

another parent.

• Dimension crossover swaps two features between parents.

The exact probabilities of each variation operator will affect the performance of the

algorithm, but for the sake of simplicity we use each operator with uniform probability. In

the following section, we describe semantic crossover operators that are analyzed for their

usefulness in our experiments.

3.2.1 Semantic Crossover—The following two crossover methods are called semantic
because they use information about the program’s outputs to determine the recombination

that occurs to produce a child from two parents. Both operators are based on the following

La Cava and Moore Page 6

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

observations. We have two parent representations, ϕp1 and ϕp2, with corresponding model

outputs yp1 and yp2 that are linear combinations of their respective representations, as in

Eqn. 1. We want to produce the best combination of ϕp1 and ϕp2 for the child representation

ϕc. Basically we can treat this as a feature selection problem, where we have features ϕA =

ϕp1 ∪ ϕp2 and we want to pick the best. On one hand we could simply concatenate the

feature sets, and generate a new model y ϕA , which is the linear model fit to all features of

both parents. This approach would lead to exponential growth in offspring, which would run

against our goal of lowering complexity.

In lieu of that approach, we propose here what are essentially regularized versions of

geometric semantic crossover [54] that constrain the number of features in the offspring to

be of equal cardinality to ϕp0, i.e. |ϕc| = |ϕp1|. The first operator, best residual fit crossover

(ResXO), chooses a feature from ϕp1 to be replaced, and then chooses the feature in ϕp2 that

best approximates the residual of the model after removing this feature. The second operator,

stagewise crossover (StageXO), uses forward stagewise regression [32] as a feature selection

method to iteratively construct the offspring.

Best residual fit crossover (ResXO) Given parents p1 and p2, ResXO swaps a feature in p1

with the feature in p2 that most closely approximates the residual error of p1 with the

selected feature removed. The child representation is denoted as ϕc. The steps are as follows:

1. Pick ϕd from ϕp1 using probabilities given by Eqn. 2.

2. Calculate the residual of p1 without ϕd:

r = y − yp1 − βdϕd

3. Choose ϕ* from ϕp2, which is the feature most correlated with r.

4. ϕc = ϕp1 with ϕd replaced by ϕ*.

ResXO can be likened to a special case of semantic backpropagation [17, 62, 26], since it

seeks to replace a component of the parent program with a subprogram most closely

matching the desired semantics, given by r. Within the MGP framework, this

backpropagation is very simple, and does not require complex inversion operations to be

introduced. We expect that ResXO will also lead to lower correlations between features in ϕc

than in ϕp1. To understand why, consider that

r = y − ∑
ϕi ∈ ϕp1\ϕd

βiϕi

Therefore r should have low correlation with the rest of the p1’s representation. Assuming

the replacement feature from ϕp2 closely matches r, it should also be uncorrelated with {ϕp1

\ ϕd}. Note that ResXO may produce an individual with higher squared error than its parents,

since ϕd may be more correlated with r than ϕ*.

Forward stagewise crossover (StageXO) Rather than restricting crossover to the replacement

of a single feature, the crossover operator can be used to compile the set of features that

La Cava and Moore Page 7

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

iteratively reduce the target error using a forward stagewise crossover method we call

StageXO. The procedure is as follows:

1. Set the initial residual equal to the target: r = y. Center means around zero for all

ϕ.

2. Set ϕA to be all subprograms in ϕp1 and ϕp2.

3. While |ϕc| < |ϕp1|:

a. Pick ϕ* from ϕA which is most correlated with r.

b. Compute the least squares coefficient b for ϕ* fit to r.

c. Update r = r – bϕ*

d. Add ϕ* to ϕc.

e. Remove ϕ* from ϕA.

Unlike feature selection methods like forward/backward stepwise selection, forward

stagewise selection only calculates the weight of a single feature at a time, and is thus more

lightweight. The downside of this approach in the context of regression is that it generally

takes more iterations to reach the least squares coefficients of the complete model [21]. In

our case this is unimportant, since we are only interested in quickly choosing the most

important features, which are then used to fit a multiple linear regression model. We expect

the child representation returned by StageXO to contain uncorrelated features since the

residual is updated each iteration to remove the portion of the response explained by

previous features.

Forward stagewise regression, and therefore the StageXO operator, is closely related to

boosting [20]. In both cases the residual is iteratively reduced by adding model components

(weak learners in the case of boosting, and features/building blocks in our case). The

relationship between forward stagewise regression, boosting, and regularized linear models

is expounded upon in [21]. The stagewise additive modeling paradigm is also used by a

recent GP technique called Wave [51], in which GP runs are iteratively trained on residuals

of previous runs. The insight here is that the unique representation of programs in MGP

allows the same general methodology to be exploited for combining partial solutions during

crossover, rather than as a post-run ensemble method.

Let us briefly consider the computational complexity of these operators. Both operators

scale linearly with dataset size, N. Let M be the maximum dimensionality of an individual, a

user-specified parameter defined for the experiments in Table 2. ResXO scales linearly with

M (due to step 3), whereas StageXO scales quadratically with M (due to Step 3.(a)).

Therefore we expect ResXO to be quicker in practice, a hypothesis we test in the

experiments of Section 4.

3.3 Selection and Survival

The selection step selects P parents that will be used to generate offspring. Following

variation, the population consists of 2P representations of parents and offspring. The survival

step is used to reduce the population back to size P, at which point the generation is finished.

La Cava and Moore Page 8

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We empirically compared five algorithms for selection and survival: 1) ϵ-lexicase selection

(Lex) [47], 2) non-dominated sorting genetic algorithm (NSGA2) [13], 3) a novel hybrid

algorithm using Lex for selection and NSGA2 for survival, 4) simulated annealing [34], and

5) random search. These comparisons are described in Appendix Section 9.2. We found that

the hybrid algorithm (3) performed the best; it is described below.

Parents are selected using Lex. Lex was proposed for regression problems [47, 41] as an

adaption of lexicase selection [71] for continuous domains. The version of ϵ-lexicase

selection we refer to and describe here is the “semi-dynamic” version proposed previously

[41]. Under ϵ-lexicase selection, parents are chosen by filtering the population according to

randomized orderings of training samples, with the ϵ threshold defined relative to the sample

loss of the population. This filtering strategy scales the probability of selection for an

individual based on the difficulty of the training cases on which the individual performs

well. Lex has shown strong performance among SR methods in recent tests, motivating our

interest in studying it [61].

Survival is conducted using the survival sub-routine of NSGA2, a popular strategy for multi-

objective optimization [13]. NSGA2 applies preference for survival using Pareto dominance

relations. An individual (ni) is said to dominate another (nj) if, for all objectives, ni performs

at least as well as nj, and for at least one objective, ni strictly outperforms nj. The Pareto

front is the set of individuals in ℕ that are non-dominated in the population and thus

represent optimal trade-offs between objectives found during search. Individuals are

assigned a Pareto ranking that specifies the number of individuals that dominate them,

thereby determining their proximity to the front.

The survival step of NSGA2 begins by sorting the population according to their Pareto front

ranking and choosing the lowest ranked individuals for survival. To break rank ties, NSGA2

assigns each individual a crowding distance measure, which quantifies an individual’s

distance to its two adjacent neighbors in objective space. If a rank level does not completely

fit in the survivor pool, individuals of that rank are sorted by highest crowding distance and

added in order until P individuals are chosen.

3.3.1 Objectives—In our study, we consider three objectives corresponding to three

goals:

1. Reduce model error.

2. Minimize complexity of the representation.

3. Minimize the entanglement of the representation.

The objectives related to the first two goals are used whenever NSGA2 is used for selection

or survival in any version of FEAT explored in this paper. For the final goal of minimizing

entanglement, we experiment with the addition of one of two different objectives, described

at the end of this section.

The first objective is always the mean squared loss for individual n, and the second is the

complexity of the representation. Regarding complexity, many definitions come to mind:

La Cava and Moore Page 9

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

one could look at the number of operations in a representation, or look at the behavioral

complexity of the representation (e.g. using the order of a best-fit polynomial [79]). The

complexity definition we use is similar to that used by [35]. The basic notion is to assign a

complexity weight to each operator (see Table 1), with higher weights assigned to operators

considered more complex. If the weight of operator o is co, then the complexity of an

expression tree beginning at node o is defined recursively as

C(o) = co ∑
a = 1

k
C(a) (3)

where node o has k arguments, and C(a) is the complexity of argument a. The complexity of

a representation is then defined as the sum of the complexities of its output nodes. The goal

of defining complexity in such a way is to discourage deep sub-expressions within complex

nodes, which are often hard to interpret. It is important to note that the choice of operator

weights is bound to be subjective, since we lack an objective notion of interpretability.

We test the third objective using two different metrics: the correlation of the transformation

matrix ϕ(x) and its condition number. These metrics are defined below.

Disentanglement is a term used to describe the notion of a representation’s ability to

separate factors of variation in the underlying process [4]. Although a thorough review is

beyond the scope of this section, there is a growing body of literature addressing

disentanglement, primarily with unsupervised learning and/or image analysis [53, 80, 28, 24,

27, 40]. There are various ways to quantify disentanglement. For instance, [5] proposed

measuring disentanglement as the difference between geodesic and Euclidean distances

among points on a manifold (i.e. training instances). If the latent structure is known, the

information-theoretic metrics proposed by [15] may be used. In the case of regression, a

disentangled representation ideally contains a minimal set of features, each corresponding to

a separate latent factor of variation, and each orthogonal to each other. In this regard, we

attempt to minimize the collinearity between features in ϕ as a way to promote

disentanglement. We tested two measurements of collinearity (a.k.a. multicollinearity) in the

derived feature space. The first is the average squared Pearson’s correlation among features

of ϕ, i.e.,

Corr(ϕ) = 1
N(N − 1) ∑

ϕi, ϕj ∈ ϕ, i ≠ j

cov ϕi, ϕj
σ ϕi σ ϕj

2
(4)

The motivation to square the Pearson’s correlation is the observation that two negatively

correlated features are equally undesirable to two positively correlated features. Eqn. 4 is

relatively inexpensive to compute but only captures bivariate correlations in ϕ. As a result

we also test the condition number (CN). Consider the N × m representation matrix Φ, where

each column is the output of a feature. The CN of Φ is defined as

La Cava and Moore Page 10

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CN(ϕ) = μmax(Φ)
μmin(Φ) (5)

where μmax and μmin are the largest and smallest singular values of Φ. Unlike Corr, CN can

capture higher-order dependencies in the representation. CN is also related directly to the

sensitivity of Φ to perturbations in the training data [3, 9], and thus captures a notion of

model invariance explored in previous work by [25]. Another common measure of

multicollinearity, the variance inflation factor [59], is likely to be too expensive to compute

for our purposes.

3.4 Connection to Neural Networks

In addition to learning internal weights via gradient descent, FEAT includes instructions

typically used as activation functions in neural networks (NN), e.g. tanh, sigmoid, logit and

relu nodes, in addition to elementary arithmetic and boolean operators. Although a fully

connected feedforward NN could be represented by this construction, representations in

FEAT are biased to be thinly connected by their tree-based initialization. Because of this

architecture, FEAT can be thought of as a method for evolving neural network architectures.

The idea to evolve NN architectures is well established in literature, and is known as

neuroevolution. Popular methods of neuroevolution include neuroevolution of augmenting

topologies (NEAT[75] and Hyper-NEAT[74]), and compositional pattern producing

networks [72]. The aforementioned approaches eschew the parameter learning step common

in other NN paradigms, although others have developed integrations [16]. In addition, they

have been developed predominantly for other task domains such as robotics and control [23],

image classification [66, 65], and representation learning [30, 10]. Reviews of these methods

are available [19, 73]. Neuroevolution is a part of a broader research field of neural

architecture search (NAS) [81, 48, 49]. NAS methods vary in approach, including for

example parameter sharing [64], sequential model-based optimization [49], representation

learning [81], and greedy heuristic strategies [11].

4 Experiment

Our experiment consists of three stages. First, we conduct a robust study of FEAT with and

without the semantic crossover operators introduced in Section 3.2.1. In this study we

simultaneously vary the hyperparameters related to variation in order to analyze the results

in detail for eight regression problems. In the second study, we compare the use of additional

objectives (Section 3.3.1), the use of semantic crossover, and state-of-the-art ML methods

across 100 benchmark regression problems from the Penn ML Benchmark (PMLB) [60].

The properties of these datasets are shown in Fig. 3. In the final study, we compare FEAT,

FEATResXO, and FEATStageXO to results from a recent large benchmark study of SR

methods [61] utilizing the same benchmark resource.

In addition to these studies, we examine the FEAT results in detail for one of the benchmark

datasets. For this dataset we plot the final population of models, illustrate model selection

and compare the resultant features to results from linear and ensemble tree-based results.

This gives practical insight into the method and provides a sense of the intelligibility of an

La Cava and Moore Page 11

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

example representation. The results of this illustrative example are given in the Appendix

Section 9.3.

4.1 Comparison of crossover methods

Despite several MGP methods having been proposed, there has not been a systematic study

of the effect of variation operators on the performance of this family of methods. To fill this

gap, and to properly analyze the new methods introduced in this paper, we performed a grid

search of variation hyperparameters on eight regression problems. The hyperparameters that

were varied are shown in Table 2.

Feedback softmax normalization refers to the softmax transformation in Eqn. 2; we tested

for whether this normalization, which assumes a multinomial distribution of probabilities,

was useful. The eight comparison problems are listed in Table 3.

4.2 Comparison of all FEAT variants

In the second study we compare all FEAT variants to four state-of-the-art ML methods. This

study includes the assessment of additional objectives that explicitly reward disentangled

representations as described in Section 3.3.1. For each method we perform hyperparameter

tuning as shown in Table 6 in the Appendix Section 9.1. We compare all of the FEAT

variants to XGBoost [7], multilayer perceptron (MLP), ElasticNet, kernelized ridge

regression, and random forests (RF). We assess the methods in terms of their R2 test set

scores as well as the complexity of their solutions.

At the beginning of model training, FEAT sets aside 25% of the shuffled training data for

validation and final model selection. The population’s median validation fitness is also used

to terminate training if it stops improving for a set number of generations (see “max stalled

generations” in Table 2). Otherwise, we limit FEAT’s optimization to 200 iterations or 60

minutes, whichever comes first. All runs are conducted on a heterogeneous computing

cluster, with each training instance run on a single 2.6 GHz processor with a maximum of 12

GB of RAM. For each method, we use grid search to tune the hyperparameters with 10-fold

cross validation (CV). We use the mean cross-validation coefficient of determination (R2)

for assessing performance, defined as:

R2(y, y) = 1 −
∑i yi − yi

2

∑i yi − y 2 (6)

Where y is the mean of the data labels y. In our results we report the CV scores for each

method using its best hyperparameters. The algorithms are ranked on each dataset using

their median CV score over 5 randomized shuffles of the dataset. For comparing complexity,

we count the number of nodes in the final model produced by each method for each trial on

each dataset. Note that this complexity definition is different (and simpler) than that used as

an objective in FEAT, i.e. Eqn. 3. To quantify the “entanglement” of the feature spaces, we

report Eqn. 4 in the raw data and in the final hidden layer of FEAT and MLP models. We

also test two additional versions of Feat, denoted FeatCorr and FeatCN, that include a third

objective corresponding to Eqn. 4 and 5, respectively.

La Cava and Moore Page 12

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.3 Benchmark comparison

In the final study, we compared FEAT with each crossover variant to 15 other methods: 5 GP

methods [6, 1, 67, 41] and 10 ML methods from scikit-learn [63]. The 5 GP methods we

compared to are:

• Geometric Semantic GP (GSGP) [6]

• MRGP [1]

• Age-fitness Pareto Optimization (AFP) [67]

• ϵ-lexicase selection (EPLEX) [41]

• ϵ-lexicase selection with 1 million evaluations (EPLEX-1M) [41]

These methods were benchmarked on 94 of the open-source datasets collected in the Penn

ML Benchmark [60]. We used results from Orzechowski et. al.’s benchmark analysis [61] as

a comparison, and followed the same validation procedure. Each comparison method

underwent hyperparameter tuning using 5-fold cross validation on a 75% split of the training

set, and was then tested on a 25% test fold. The hyperparameters are detailed in Table 1 of

the original work [61]. This process was repeated for 10 trials. GP methods were given

100,000 evaluations, apart from EPLEX-1M which used 1 million. For FEAT, we did not re-

tune the hyperparameters, instead using the values determined from the hyperparameter

tuning experiment.

4.4 Metrics

As mentioned earlier, we consider there to be three over-arching goals when learning a

representation. The first is that ϕ(x) leads to a model with a low generalization error. To

measure this, we compare the mean squared error (MSE) and coefficient of determination

(R2) of each model output on the test set. We also wish to minimize the complexity of the

representation. To measure the complexity of solutions in FEAT, we count the total number

of nodes in the final representation. For comparison to XGBoost, we count the number of

nodes in the trees, and for comparison to MLP, we count the number of nodes in the

network. Finally, we want a representation that is “disentangled”, meaning that each feature

of ϕ is as orthogonal to the others as possible. We use this Eqn. 4 to compare the

entanglement of final representations across selection methods.

5 Results

The comparison of crossover methods are presented first. In addition to test score reporting,

we plot various views of the data with respect to different hyperparameters, and also look at

representation correlations in the resultant models and statistical comparisons. The

subsequent section compares the use of additional objectives within FEAT to the use of

semantic crossover; these comparisons include ML benchark methods as well. We include

comparisons of the final model sizes and their correlations in this section. Finally, in the last

section we compare FEAT, FEATResXO and FEATStageXO to the set of results from [61].

This section includes score comparisons and runtime comparisons.

La Cava and Moore Page 13

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.1 Comparison of crossover methods

Prediction comparisons for each crossover method are shown in Fig. 4 for the eight tuning

problems. The plot shows the mean test fold R2 value for the tuned estimator, summarized

across trials. In general one can see that StageXO produces the most accurate results,

followed by ResXO. Across the eight problems, StageXO significantly outperforms standard

crossover (p <0.035); the pairwise statistical comparisons are given in Table 4.

We also looked at the correlation of the representations produced by the different crossover

methods, shown in Fig. 5. We confirmed our hypotheses that ResXO and StageXO would

produce less correlated representations than the traditional crossover operator.

The best values for each tuned parameter is shown in Table 5. We found that softmax

normalization did not improve the feedback probabilities. Across problems, the best

crossover/mutation fraction was found to be 0.75 (Fig. 6), with a feature crossover rate of

0.75 for Feat and 0.5 for ResXO and StageXO. The best feedback value was problem

dependent, as shown in Fig. 7. Since the feedback essentially controls the amount of

exploration versus exploitation, it stands to reason that the ideal setting of this parameter

would be problem dependent. Feedback levels of 0.25 were best for FEAT and

FEATStageXO, and no feedback was best for FEATResXO. For the ResXO operator, this

corresponds to choosing the feature to swap out of the parent at random.

5.2 Comparison of FEAT Variants

The score statistics for each of the FEAT variants and other methods are shown in Fig. 8

across 100 datasets from PMLB (Fig. 3). Full statistical comparisons are reported in

Appendix 9.4. Overall, FEAT and XGBoost produce the best predictive performance across

datasets without significant differences between the two (p=1.0). FEAT significantly

outperforms MLP, RF, KernelRidge and ElasticNet (p ≤7.7e-03), as does XGBoost (p
≤2.3e-02). Among FEAT variants, FEATStageXO has the highest overall median R2 value,

although the differences are not significant.

As measured by the number of nodes in the final solutions, the models produced by FEAT

are significantly less complex than XGBoost, RF, and MLP, as shown in Fig. 9 (p <1e-16).

FEAT’s final models tend to be within 1 order of magnitude of the linear models

(ElasticNet), and 2–4 orders of magnitude smaller than the other non-linear methods.

Among FEAT variants there are a few significant differences (see Table 9), albeit with small

effect sizes as noted in Fig. 9.

We plot the mean pairwise correlations between features in the final representations across

all problems in Fig. 10. We find that the use of objectives that minimize correlations

between features (FeatCN, FeatCorr) have a small effect on minimizing the correlations in

the resultant feature spaces for these problems. Interestingly, we see an opposite effect for

the semantic variation operators on these problems - they tend to produce feature spaces that

are more highly correlated than those produced by FEAT, unlike the results on the

comparison problems in Fig. 5. Compared to the correlations in the final layer of trained

MLP models, the FEAT variants tend to produce more entangled representations, indicating

room for improvement.

La Cava and Moore Page 14

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.3 Benchmark comparison

The comparisons of FEAT to 15 other methods is shown in Fig. 11. In this figure, each

boxplot shows the distribution of rankings (in terms of test MSE) over all datasets for each

method. Across problems, FEAT and FEATStageXO achieves a nearly identical ranking to

EPLEX-1M, which is ϵ-lexicase selection run for 1 million evaluations. Note that FEAT

achieves these similar results using 100,000 evaluations. However, the additional complexity

of fitting ML models to each individual makes the evaluation of each individual in FEAT

more costly than traditional GP. Therefore wall clock times shown in Fig. 12 reflect this,

showing that the FEAT wall clock times sit somewhere between the methods that ran for

100,000 evaluations (GSGP, AFP, MRGP, EPLEX) and 1 million evaluations (EPLEX-1M).

FEATResXO and FEATStageXO are slower, due to the additional complexity of semantic

crossover.

A Friedman test of the MSE rankings across problems indicates significant differences.

Table 10 shows post-hoc pairwise Wilcoxon signed rank tests of the results. FEAT,

FEATResXO, and FEATStageXO all significantly outperform the other GP-based methods

run for 100,00 evaluations. There is no significant difference found between the FEAT

variants, EPLEX-1M, XGBoost, GradBoost, or MLP. The FEAT variants significantly

outperform all other ML methods across the benchmark problems.

6 Discussion & Conclusion

In this paper we have argued that MGP is a useful, appropriate and interesting architecture

of GP for learning feature spaces for regression. Unlike other approaches within GP to

tackle representation learning, MGP is exposes independent components of programs, i.e.

evolving features, to the search process. This property allows for the exploitation of

additional information in both the variation and evaluation steps. Here, we have proposed an

MGP approach to regression, FEAT, that borrows concepts from NN learning and have used

it as a test bed for new methods.

We proposed two semantic crossover methods in this work. One of these methods, based on

stagewise regression, mimics forward stagewise selection to select and propagate

components of parents into offspring. We find that this method, in terms of average ranking

of test R2 values, gives the best results of all tested ML methods across a set of 100

regression problems, varying in size and dimensionality. We find conflicting pieces of

evidence regarding the behavior of StageXO in terms of the collinearity of representations it

produces; on some sets it is able to reduce collinearity, but over a broader set of problems

tends to result in more collinearity.

We also proposed to encourage the orthogonality of data representations by including

additional fitness objectives during survival. We tested both average pairwise correlation and

the condition number of the representation matrix as metrics in this regard. Neither objective

had a significant effect on the performance of FEAT, and had a mild effect on reducing the

collinearity of representations in the main experiment.

La Cava and Moore Page 15

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

With these results in mind, it seems clear that further work should be dedicated to exploring

methods for addressing collinearity in the MGP framework. There are many possibilities for

reducing collinearity during variation. One thought is to try to prune collinear features with a

mutation operator that removes the feature from the collinear pair that is less correlated with

the data label. Another idea is to test different termination criteria for StageXO that may lead

to less collinearity (recall that we terminate this crossover step when the offspring reaches

the size of its root parent). Another approach is to produce offspring from more than two

parents, as is done in recent work [78, 18]. Moving beyond variation, it may be possible to

achieve lower representation entanglement through a post-processing step. In any case, the

strong performance of FEAT on existing benchmarks will hopefully motivate further

research within the MGP framework.

Acknowledgments

This work was supported by NIH grants K99LM012926–01A1, AI116794 and LM012601, as well as the PA CURE
grant from the Pennsylvania Department of Health. Special thanks to Tilak Raj Singh and other members of the
Computational Genetics Lab at the University of Pennsylvania.

9: Appendix

9.1 Additional Experiment Information

Table 6 details the hyperparameters for each method used in the experimental results

described in Sections 4 and 5.

9.2 Comparison of selection algorithms

Our initial analysis sought to determine how different SO approaches performed within this

framework. We tested five methods: 1) NSGA2, 2) Lex, 3) LexNSGA2, 4) Simulated

annealing, and 5) random search. The simulated annealing and random search approaches

are described below.

Simulated annealing Simulated annealing (SimAnn) is a non-evolutionary technique that

instead models the optimization process on the metallurgical process of annealing. In our

implementation, offspring compete with their parents; in the case of multiple parents,

offspring compete with the program with which they share more nodes. The probability of

an offspring replacing its parent in the population is given by the equation

Psel no np, t = exp F np − F no
t (7)

The probability of offspring replacing its parent is a function of its fitness, F, in our case the

mean squared loss of the candidate model. In Eqn. 7, t is a scheduling parameter that

controls the rate of “cooling”, i.e. the rate at which steps in the search space that are worse

are tolerated by the update rule. In accordance with [34], we use an exponential schedule for

t, defined as tg = (0.9)gt0, where g is the current generation and t0 is the starting temperature.

t0 is set to 10 in our experiments.

La Cava and Moore Page 16

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Random search We compare the selection and survival methods to random search, in which

no assumptions are made about the structure of the search space. To conduct random search,

we randomly sample S using the initialization procedure. Since FEAT begins with a linear

model of the process, random search will produce a representation at least as good as this

initial model on the internal validation set.

Table 6

Comparison methods and their hyperparameters for the comparisons in Section 4.2. Tuned

values denoted with brackets.

Method Setting Value

FEAT Population size 500

Termination criterion 200 generations, 60 minutes, or 50 iterations of stalled
median validation loss

Max depth 10

Max dimensionality 50

Objectives {(MSE,C), (MSE,C,Corr),(MSE,C,CN)}

Feedback (f) { 0.25, 0.5, 0.75 }

Crossover/mutation ratio { 0.25, 0.5, 0.75 }

Batch size 1000

Learning rate (initial) 0.1

SGD iterations / individual / generation 10

MLP Optimizer {LBFGS, Adam [33]}

Hidden Layers {1,3,6}

Neurons {(100,), (100,50,10),

(100,50,20,10,10,8)}

Learning rate (initial) {1e-4, 1e-3, 1e-2}

Activation {logistic, tanh, relu}

Regularization L2, α = {1e-5, 1e-4, 1e-3}

Max Iterations 10000

Early Stopping True

XGBoost Number of estimators {10, 100, 200, 500, 1000}

Max depth {3, 4, 5, 6, 7}

Min split loss (γ) {1e-3,1e-2,0.1, 1,10,1e2,1e3}

Learning rate {0, 0.01, …, 1.0 }

Random
Forest Number of estimators {10, 100, 1000}

Min weight fraction leaf { 0.0, 0.25, 0.5 }

Kernel Ridge Kernel Radial basis function

Regularization (α) { 1e-3, 1e-2, 0.1, 1 }

Kernel width (γ) { 1e-2, 0.1, 1, 10, 100 }

ElasticNet l1-l2 ratio { 0, 0.01, …, 1.0 }

selection { cyclic, random }

A note on archiving When FEAT is used without a complexity-aware survival method (i.e.,

with Lex, SimAnn, Random), a separate population is maintained that acts as an archive.

La Cava and Moore Page 17

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The archive maintains a Pareto front according to minimum loss and complexity (Eqn 3). At

the end of optimization, the archive is tested on a small hold-out validation set. The

individual with the lowest validation loss is the final selected model. Maintaining this

archive helps protect against overfitting resulting from overly complex / high capacity

representations, and also can be interpreted directly to help understand the process being

modelled.

Fig. 13.
Mean 10-fold CV R2 performance for various SO methods in comparison to other ML

methods, across the benchmark problems.

Fig. 14.
Size comparisons of the final models in terms of number of parameters.

La Cava and Moore Page 18

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 15.
Wall-clock runtime for each method in seconds.

Fig. 16.
Mean correlation between engineered features for different SO methods compared to the

correlations in the original data (ElasticNet).

We benchmarked these approaches in a separate experiment on 88 datasets from PMLB

[60]. The results are shown in Figures 13–16. Considering Figures 13 and 14, we see that

LexNSGA2 achieves the best average R2 value while producing small solutions in

comparison to Lex. NSGA2, SimAnneal, and Random search all produce less accurate

models. The runtime comparisons of the methods in Figure 15 show that they are mostly

within an order of magnitude, with NSGA2 being the fastest (due to its maintenance of

small representations) and Random search being the slowest, suggesting that it maintains

large representations during search. The computational behavior of Random search suggests

the variation operators tend to increase the average size of solutions over many iterations.

La Cava and Moore Page 19

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9.3 Illustrative Example

We show an illustrative example of the final archive and model selection process from

applying FEAT to a galaxy visualization dataset [8] in Figure 17. The red and blue points

correspond to training and validation scores for each archived representation with a square

denoting the final model selection. Five of the representations are printed in plain text, with

each feature separated by brackets. The vertical lines in the left figure denote the test scores

for FEAT, RF and ElasticNet. It is interesting to note that ElasticNet performance roughly

matches the performance of a linear representation, and the RF test performance corresponds

to the representation [tanh(x0)][tanh(x1)] that is suggestive of axis-aligned splits for x0 and

x1. The selected model is shown on the right, with the features sorted according to the

magnitudes of β in the linear model. The final representation combines tanh, polynomial,

linear and interacting features. This representation is a clear extension of simpler ones in the

archive, and the archive thereby serves to characterize the improvement in predictive

accuracy brought about by increasing complexity. Although a mechanistic interpretation

requires domain expertise, the final representation is certainly concise and amenable to

interpretation.

Fig. 17.
(Left) Representation archive for the visualizing galaxies dataset. (Right) Selected model

and its weights. Internal weights omitted.

9.4 Statistical Comparisons

We perform pairwise comparisons of methods according to the procedure recommended by

[14] for comparing multiple estimators. In Table 8, the CV R2 rankings are compared. In

Table 9, the best model size rankings are compared. Note that KernelRidge is omitted from

the size comparisons since we don’t have a comparable way of measuring the model size.

References

1. Arnaldo I, Krawiec K, O’Reilly UM: Multiple regression genetic programming In: Proceedings of
the 2014 conference on Genetic and evolutionary computation, pp. 879–886. ACM Press (2014).
DOI 10.1145/2576768.2598291.URL10.1145/2576768.2598291.URLhttp://dl.acm.org/
citation.cfm?doid=2576768.2598291http://dl.acm.org/citation.cfm?doid=2576768.2598291

2. Arnaldo I, O’Reilly UM, Veeramachaneni K: Building Predictive Models via Feature Synthesis. pp.
983–990. ACM Press (2015). DOI 10.1145/2739480.2754693. URL http://dl.acm.org/citation.cfm?
doid=2739480.2754693

La Cava and Moore Page 20

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dl.acm.org/citation.cfm?doid=2739480.2754693
http://dl.acm.org/citation.cfm?doid=2739480.2754693

3. Belsley DA: A Guide to using the collinearity diagnostics. Computer Science in Economics and
Management 4(1), 33–50 (1991). DOI 10.1007/BF00426854. URL 10.1007/BF00426854

4. Bengio Y, Courville A, Vincent P: Representation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelligence 35(8), 1798–1828 (2013). URL http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238 [PubMed: 23787338]

5. Brahma PP, Wu D, She Y: Why Deep Learning Works: A Manifold Disentanglement Perspective.
IEEE Trans. Neural Netw. Learning Syst 27(10), 1997–2008 (2016)

6. Castelli M, Silva S, Vanneschi L: A C++ framework for geometric semantic genetic programming.
Genetic Programming and Evolvable Machines 16(1), 73–81 (2015). DOI 10.1007/
s10710-014-9218-0. URL https://link.springer.com/article/10.1007/s10710-014-9218-0. ZSCC:
NoCitationData[s0]

7. Chen T, Guestrin C: XGBoost: A Scalable Tree Boosting System In: Proceedings of the 22Nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘16, pp. 785–
794. ACM, New York, NY, USA (2016). DOI 10.1145/2939672.2939785. URL http://doi.acm.org/
10.1145/2939672.2939785

8. Cleveland WS: Visualizing data. Hobart Press (1993)

9. Cline A, Moler C, Stewart G, Wilkinson J: An Estimate for the Condition Number of a Matrix.
SIAM Journal on Numerical Analysis 16(2), 368–375 (1979). DOI 10.1137/0716029. URL https://
epubs.siam.org/doi/abs/10.1137/0716029

10. Conti E, Madhavan V, Such FP, Lehman J, Stanley KO, Clune J: Improving Exploration in
Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking
Agents. arXiv:1712.06560 [cs] (2017). URL http://arxiv.org/abs/1712.06560. ArXiv: 1712.06560

11. Cortes C, Gonzalvo X, Kuznetsov V, Mohri M, Yang S: Adanet: Adaptive structural learning of
artificial neural networks. arXiv preprint arXiv:1607.01097 (2016)

12. De Melo VV: Kaizen programming. pp. 895–902. ACM Press (2014). DOI
10.1145/2576768.2598264. URL http://dl.acm.org/citation.cfm?doid=2576768.2598264

13. Deb K, Agrawal S, Pratap A, Meyarivan T: A Fast Elitist Non-dominated Sorting Genetic
Algorithm for Multi-objective Optimization: NSGA-II In: Schoenauer M, Deb K, Rudolph G, Yao
X, Lutton E, Merelo JJ, Schwefel HP (eds.) Parallel Problem Solving from Nature PPSN VI, vol.
1917, pp. 849–858. Springer Berlin Heidelberg, Berlin, Heidelberg (2000). URL http://
repository.ias.ac.in/83498/

14. Demšar J: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine
Learning Research 7(Jan), 1–30 (2006). URL http://www.jmlr.org/papers/v7/demsar06a.html

15. Eastwood C, Williams CKI: A Framework for the Quantitative Evaluation of Disentangled
Representations (2018). URL https://openreview.net/forum?id=By-7dz-AZ

16. Fernando C, Banarse D, Reynolds M, Besse F, Pfau D, Jaderberg M, Lanctot M, Wierstra D:
Convolution by Evolution: Differentiable Pattern Producing Networks. arXiv:1606.02580 [cs]
(2016). URL http://arxiv.org/abs/1606.02580. ArXiv: 1606.02580

17. Ffrancon R, Schoenauer M: Memetic Semantic Genetic Programming. pp. 1023–1030. ACM Press
(2015). DOI 10.1145/2739480.2754697. URL http://dl.acm.org/citation.cfm?
doid=2739480.2754697

18. Fine SB, Hemberg E, Krawiec K, O’Reilly UM: Exploiting Subprograms in Genetic Programming
In: Banzhaf W, Olson RS, Tozier W, Riolo R (eds.) Genetic Programming Theory and Practice XV,
Genetic and Evolutionary Computation, pp. 1–16. Springer International Publishing (2018)

19. Floreano D, Dürr P, Mattiussi C: Neuroevolution: from architectures to learning. Evolutionary
Intelligence 1(1), 47–62 (2008). URL http://link.springer.com/article/10.1007/s12065-007-0002-4

20. Freund Y, Schapire RE: A desicion-theoretic generalization of on-line learning and an application
to boosting In: Computational learning theory, pp. 23–37. Springer (1995). URL http://
link.springer.com/chapter/10.1007/3-540-59119-2_166

21. Friedman J, Hastie T, Tibshirani R: The elements of statistical learning, vol. 1 Springer series in
statistics Springer, Berlin (2001). URL http://statweb.stanford.edu/~tibs/book/preface.ps

22. Gandomi AH, Alavi AH: A new multi-gene genetic programming approach to non-linear system
modeling. Part I: materials and structural engineering problems. Neural Computing and

La Cava and Moore Page 21

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6472238
https://link.springer.com/article/10.1007/s10710-014-9218-0
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://epubs.siam.org/doi/abs/10.1137/0716029
https://epubs.siam.org/doi/abs/10.1137/0716029
http://arxiv.org/abs/1712.06560
http://dl.acm.org/citation.cfm?doid=2576768.2598264
http://repository.ias.ac.in/83498/
http://repository.ias.ac.in/83498/
http://www.jmlr.org/papers/v7/demsar06a.html
https://openreview.net/forum?id=By-7dz-AZ
http://arxiv.org/abs/1606.02580
http://dl.acm.org/citation.cfm?doid=2739480.2754697
http://dl.acm.org/citation.cfm?doid=2739480.2754697
http://link.springer.com/article/10.1007/s12065-007-0002-4
http://link.springer.com/chapter/10.1007/3-540-59119-2_166
http://link.springer.com/chapter/10.1007/3-540-59119-2_166
http://statweb.stanford.edu/~tibs/book/preface.ps

Applications 21(1), 171–187 (2012). DOI 10.1007/s00521-011-0734-z. URL 10.1007/
s00521-011-0734-z

23. Gomez F, Schmidhuber J, Miikkulainen R: Efficient non-linear control through neuroevolution In:
ECML, vol. 4212, pp. 654–662. Springer (2006). URL http://link.springer.com/content/pdf/
10.1007/11871842.pdf#page=676

24. Gonzalez-Garcia A, van de Weijer J, Bengio Y: Image-to-image translation for cross-domain
disentanglement. arXiv preprint arXiv:1805.09730 (2018)

25. Goodfellow I, Lee H, Le QV, Saxe A, Ng AY: Measuring invariances in deep networks. In:
Advances in neural information processing systems, pp. 646–654 (2009)

26. Graff M, Tellez ES, Villaseñor E, Miranda S: Semantic Genetic Programming Operators Based on
Projections in the Phenotype Space p. 13 (2015)

27. Hadad N, Wolf L, Shahar M: A Two-Step Disentanglement Method. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 772–780 (2018)

28. Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A: β-VAE:
LEARNING BASIC VISUAL CONCEPTS WITH A CONSTRAINED VARIATIONAL
FRAMEWORK p. 22 (2017)

29. Hoerl AE, Kennard RW: Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics 12(1), 55–67 (1970)

30. Igel C: Neuroevolution for reinforcement learning using evolution strategies In: Evolutionary
Computation, 2003. CEC’03. The 2003 Congress on, vol. 4, pp. 2588–2595. IEEE (2003). URL
http://ieeexplore.ieee.org/abstract/document/1299414/

31. Ingalalli V, Silva S, Castelli M, Vanneschi L: A Multi-dimensional Genetic Programming
Approach for Multi-class Classification Problems In: Genetic Programming, pp. 48–60. Springer
(2014). URL http://link.springer.com/chapter/10.1007/978-3-662-44303-3_5

32. James G, Witten D, Hastie T, Tibshirani R: An Introduction to Statistical Learning, Springer Texts
in Statistics, vol. 103 Springer New York, New York, NY (2013). DOI
10.1007/978-1-4614-7138-7. URL http://link.springer.com/10.1007/978-1-4614-7138-7

33. Kingma DP, Ba J: Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs] (2014).
URL http://arxiv.org/abs/1412.6980. ArXiv: 1412.6980

34. Kirkpatrick S, Gelatt CD, Vecchi MP: Optimization by simulated annealing. science 220(4598),
671–680 (1983) [PubMed: 17813860]

35. Kommenda M, Kronberger G, Affenzeller M, Winkler SM, Burlacu B: Evolving Simple Symbolic
Regression Models by Multi-objective Genetic Programming In: Genetic Programming Theory
and Practice, Genetic and Evolutionary Computation, vol. XIV Springer, Ann Arbor, MI (2015)

36. Krawiec K: Genetic programming-based construction of features for machine learning and
knowledge discovery tasks. Genetic Programming and Evolvable Machines 3(4), 329–343 (2002).
URL http://link.springer.com/article/10.1023/A:1020984725014

37. Krawiec K: On relationships between semantic diversity, complexity and modularity of
programming tasks In: Proceedings of the fourteenth international conference on Genetic and
evolutionary computation conference, pp. 783–790. ACM (2012). URL http://dl.acm.org/
citation.cfm?id=2330272

38. Krawiec K: Behavioral program synthesis with genetic programming, vol. 618 Springer (2016)

39. Krawiec K, O’Reilly UM: Behavioral programming: a broader and more detailed take on semantic
GP In: Proceedings of the 2014 conference on Genetic and evolutionary computation, pp. 935–
942. ACM Press (2014). DOI 10.1145/2576768.2598288. URL http://dl.acm.org/citation.cfm?
doid=2576768.2598288

40. Kumar A, Sattigeri P, Balakrishnan A: Variational Inference of Disentangled Latent Concepts from
Unlabeled Observations (2018). URL https://openreview.net/forum?id=H1kG7GZAW

41. La Cava W, Helmuth T, Spector L, Moore JH: A probabilistic and multi-objective analysis of
lexicase selection and ε-lexicase selection. Evolutionary Computation pp. 1–28 (2018). DOI
10.1162/evco_a_00224. URL 10.1162/evco_a_00224

42. La Cava W, Moore J: A General Feature Engineering Wrapper for Machine Learning Using \
epsilon -Lexicase Survival In: Genetic Programming, pp. 80–95. Springer, Cham (2017). DOI

La Cava and Moore Page 22

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://link.springer.com/content/pdf/10.1007/11871842.pdf#page=676
http://link.springer.com/content/pdf/10.1007/11871842.pdf#page=676
http://ieeexplore.ieee.org/abstract/document/1299414/
http://link.springer.com/chapter/10.1007/978-3-662-44303-3_5
http://link.springer.com/10.1007/978-1-4614-7138-7
http://arxiv.org/abs/1412.6980
http://link.springer.com/article/10.1023/A:1020984725014
http://dl.acm.org/citation.cfm?id=2330272
http://dl.acm.org/citation.cfm?id=2330272
http://dl.acm.org/citation.cfm?doid=2576768.2598288
http://dl.acm.org/citation.cfm?doid=2576768.2598288
https://openreview.net/forum?id=H1kG7GZAW

10.1007/978-3-319-55696-3 6. URL https://link.springer.com/chapter/
10.1007/978-3-319-55696-3_6

43. La Cava W, Moore JH: Ensemble representation learning: an analysis of fitness and survival for
wrapper-based genetic programming methods In: GECCO ‘17: Proceedings of the 2017 Genetic
and Evolutionary Computation Conference, pp. 961–968. ACM, Berlin, Germany (2017). DOI
10.1145/3071178.3071215. URL https://arxiv.org/abs/1703.06934

44. La Cava W, Moore JH: Semantic variation operators for multidimensional genetic programming In:
Proceedings of the 2019 Genetic and Evolutionary Computation Conference, GECCO ‘19. ACM,
Prague, Czech Republic (2019). DOI 10.1145/3321707.3321776. URL http://arxiv.org/abs/
1904.08577. ArXiv: 1904.08577

45. La Cava W, Silva S, Danai K, Spector L, Vanneschi L, Moore JH: Multidimensional genetic
programming for multiclass classification. Swarm and Evolutionary Computation (2018). DOI
10.1016/j.swevo.2018.03.015. URL http://www.sciencedirect.com/science/article/pii/
S2210650217309136

46. La Cava W, Singh TR, Taggart J, Suri S, Moore JH: Learning concise representations for
regression by evolving networks of trees In: International Conference on Learning
Representations, ICLR (2019). URL https://arxiv.org/abs/1807.00981. In Press

47. La Cava W, Spector L, Danai K: Epsilon-Lexicase Selection for Regression In: Proceedings of the
Genetic and Evolutionary Computation Conference 2016, GECCO ‘16, pp. 741–7468. ACM, New
York, NY, USA (2016). DOI 10.1145/2908812.2908898. URL http://doi.acm.org/
10.1145/2908812.2908898

48. Le Q, Zoph B: Using Machine Learning to Explore Neural Network Architecture (2017). URL
https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html

49. Liu C, Zoph B, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, Huang J, Murphy K: Progressive
neural architecture search. arXiv preprint arXiv:1712.00559 (2017)

50. McConaghy T: FFX: Fast, scalable, deterministic symbolic regression technology In: Genetic
Programming Theory and Practice IX, pp. 235–260. Springer (2011). URL http://
link.springer.com/chapter/10.1007/978-1-4614-1770-5_13

51. Medernach D, Fitzgerald J, Azad RMA, Ryan C: A New Wave: A Dynamic Approach to Genetic
Programming In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ‘16, pp. 757–764. ACM, New York, NY, USA (2016). DOI 10.1145/2908812.2908857.
URL http://doi.acm.org/10.1145/2908812.2908857

52. Veloso de Melo V, Banzhaf W: Automatic Feature Engineering for Regression Models with
Machine Learning: an Evolutionary Computation and Statistics Hybrid. Information Sciences
(2017). DOI 10.1016/j.ins.2017.11.041. URL https://www.sciencedirect.com/science/article/pii/
S0020025517311040

53. Montavon G, Müller KR: Better Representations: Invariant, Disentangled and Reusable In: Neural
Networks: Tricks of the Trade, Lecture Notes in Computer Science, pp. 559–560. Springer, Berlin,
Heidelberg (2012). DOI 10.1007/978-3-642-35289-829. URL https://link.springer.com/chapter/
10.1007/978-3-642-35289-8_29

54. Moraglio A, Krawiec K, Johnson CG: Geometric semantic genetic programming In: Parallel
Problem Solving from Nature-PPSN XII, pp. 21–31. Springer (2012). URL http://
link.springer.com/chapter/10.1007/978-3-642-32937-1_3

55. Muharram M, Smith GD: Evolutionary constructive induction. IEEE Transactions on Knowledge
and Data Engineering 17(11), 1518–1528 (2005). URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1512037

56. Muñoz L, Silva S, Trujillo L: M3gp–Multiclass Classification with GP In: Genetic Programming,
pp. 78–91. Springer (2015). URL http://link.springer.com/chapter/10.1007/978-3-319-16501-1_7

57. Muñoz L, Trujillo L, Silva S, Castelli M, Vanneschi L: Evolving multidimensional transformations
for symbolic regression with M3gp. Memetic Computing (2018). DOI 10.1007/
s12293-018-0274-5. URL 10.1007/s12293-018-0274-5

58. Neshatian K, Zhang M, Andreae P: A filter approach to multiple feature construction for symbolic
learning classifiers using genetic programming. IEEE Transactions on Evolutionary Computation
16(5), 645–661 (2012). ZSCC: 0000081

La Cava and Moore Page 23

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://link.springer.com/chapter/10.1007/978-3-319-55696-3_6
https://link.springer.com/chapter/10.1007/978-3-319-55696-3_6
https://arxiv.org/abs/1703.06934
http://arxiv.org/abs/1904.08577
http://arxiv.org/abs/1904.08577
http://www.sciencedirect.com/science/article/pii/S2210650217309136
http://www.sciencedirect.com/science/article/pii/S2210650217309136
https://arxiv.org/abs/1807.00981
http://doi.acm.org/10.1145/2908812.2908898
http://doi.acm.org/10.1145/2908812.2908898
https://ai.googleblog.com/2017/05/using-machine-learning-to-explore.html
http://link.springer.com/chapter/10.1007/978-1-4614-1770-5_13
http://link.springer.com/chapter/10.1007/978-1-4614-1770-5_13
http://doi.acm.org/10.1145/2908812.2908857
https://www.sciencedirect.com/science/article/pii/S0020025517311040
https://www.sciencedirect.com/science/article/pii/S0020025517311040
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_29
https://link.springer.com/chapter/10.1007/978-3-642-35289-8_29
http://link.springer.com/chapter/10.1007/978-3-642-32937-1_3
http://link.springer.com/chapter/10.1007/978-3-642-32937-1_3
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1512037
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1512037
http://link.springer.com/chapter/10.1007/978-3-319-16501-1_7

59. O’brien RM: A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality &
Quantity 41(5), 673–690 (2007). DOI 10.1007/s11135-006-9018-6. URL 10.1007/
s11135-006-9018-6. ZSCC: 0005201

60. Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH: PMLB: A Large Benchmark
Suite for Machine Learning Evaluation and Comparison. Bio-Data Mining (2017). URL https://
arxiv.org/abs/1703.00512. ArXiv preprint arXiv:1703.00512

61. Orzechowski P, La Cava W, Moore JH: Where are we now? A large benchmark study of recent
symbolic regression methods. arXiv:1804.09331 [cs] (2018). DOI 10.1145/3205455.3205539.
URL http://arxiv.org/abs/1804.09331. ArXiv: 1804.09331

62. Pawlak TP, Wieloch B, Krawiec K: Semantic backpropagation for designing search operators in
genetic programming. IEEE Transactions on Evolutionary Computation 19(3), 326–340 (2015)

63. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, others: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12(Oct), 2825–2830 (2011). URL http://www.jmlr.org/papers/v12/
pedregosa11a.html

64. Pham H, Guan MY, Zoph B, Le QV, Dean J: Efficient Neural Architecture Search via Parameter
Sharing. arXiv preprint arXiv:1802.03268 (2018)

65. Real E: Using Evolutionary AutoML to Discover Neural Network Architectures (2018). URL
https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

66. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le Q, Kurakin A: Large-Scale Evolution
of Image Classifiers. arXiv:1703.01041 [cs] (2017). URL http://arxiv.org/abs/1703.01041. ArXiv:
1703.01041

67. Schmidt M, Lipson H: Age-fitness pareto optimization In: Genetic Programming Theory and
Practice VIII, pp. 129–146. Springer (2011). URL http://link.springer.com/chapter/
10.1007/978-1-4419-7747-2_8

68. Searson D, Willis M, Montague G: Co-evolution of non-linear PLS model components. Journal of
Chemometrics 21(12), 592–603 (2007). DOI 10.1002/cem.1084. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/cem.1084

69. Searson DP, Leahy DE, Willis MJ: GPTIPS: an open source genetic programming toolbox for
multigene symbolic regression In: Proceedings of the International multi-conference of engineers
and computer scientists, vol. 1, pp. 77–80. IMECS Hong Kong (2010)

70. Silva S, Munoz L, Trujillo L, Ingalalli V, Castelli M, Vanneschi L: Multiclass Classification
Through Multidimensional Clustering In: Genetic Programming Theory and Practice XIII, vol. 13
Springer, Ann Arbor, MI (2015)

71. Spector L: Assessment of problem modality by differential performance of lexicase selection in
genetic programming: a preliminary report. In: Proceedings of the fourteenth international
conference on Genetic and evolutionary computation conference companion, pp. 401–408 (2012).
URL http://dl.acm.org/citation.cfm?id=2330846

72. Stanley KO: Compositional pattern producing networks: A novel abstraction of development.
Genetic programming and evolvable machines 8(2), 131–162 (2007). URL http://
link.springer.com/article/10.1007/s10710-007-9028-8

73. Stanley KO, Clune J, Lehman J, Miikkulainen R: Designing neural networks through
neuroevolution. Nature Machine Intelligence 1(1), 24 (2019). DOI 10.1038/s42256-018-0006-z.
URL https://www.nature.com/articles/s42256-018-0006-z

74. Stanley KO, D’Ambrosio DB, Gauci J: A hypercube-based encoding for evolving large-scale
neural networks. Artificial life 15(2), 185–212 (2009). URL http://
www.mitpressjournals.org/doi/abs/10.1162/artl.2009.15.2.15202 [PubMed: 19199382]

75. Stanley KO, Miikkulainen R: Evolving neural networks through augmenting topologies.
Evolutionary computation 10(2), 99–127 (2002). URL http://www.mitpressjournals.org/doi/abs/
10.1162/106365602320169811 [PubMed: 12180173]

76. Tibshirani R: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) pp. 267–288 (1996). URL http://www.jstor.org/stable/2346178

La Cava and Moore Page 24

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1703.00512
https://arxiv.org/abs/1703.00512
http://arxiv.org/abs/1804.09331
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html
http://arxiv.org/abs/1703.01041
http://link.springer.com/chapter/10.1007/978-1-4419-7747-2_8
http://link.springer.com/chapter/10.1007/978-1-4419-7747-2_8
https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.1084
https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.1084
http://dl.acm.org/citation.cfm?id=2330846
http://link.springer.com/article/10.1007/s10710-007-9028-8
http://link.springer.com/article/10.1007/s10710-007-9028-8
https://www.nature.com/articles/s42256-018-0006-z
http://www.mitpressjournals.org/doi/abs/10.1162/artl.2009.15.2.15202
http://www.mitpressjournals.org/doi/abs/10.1162/artl.2009.15.2.15202
http://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811
http://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811
http://www.jstor.org/stable/2346178

77. Tibshirani R, Hastie T, Narasimhan B, Chu G: Diagnosis of multiple cancer types by shrunken
centroids of gene expression. Proceedings of the National Academy of Sciences 99(10), 6567–
6572 (2002). DOI 10.1073/pnas.082099299. URL http://www.pnas.org/content/99/10/6567

78. Vanneschi L, Castelli M, Manzoni L, Krawiec K, Moraglio A, Silva S, Gonçalves I: PSXO:
population-wide semantic crossover In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion, pp. 257–258. ACM (2017)

79. Vladislavleva E, Smits G, den Hertog D: Order of Nonlinearity as a Complexity Measure for
Models Generated by Symbolic Regression via Pareto Genetic Programming. IEEE Transactions
on Evolutionary Computation 13(2), 333–349 (2009). DOI 10.1109/TEVC.2008.926486

80. Whitney W: Disentangled Representations in Neural Models. arXiv:1602.02383 [cs] (2016). URL
http://arxiv.org/abs/1602.02383. ArXiv: 1602.02383

81. Zoph B, Le QV: Neural Architecture Search with Reinforcement Learning (2016). URL https://
arxiv.org/abs/1611.01578

La Cava and Moore Page 25

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.pnas.org/content/99/10/6567
http://arxiv.org/abs/1602.02383
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578

Fig. 1.
Example model representation in FEAT, illustrating the connection to neural networks. The

input variables (x) are represented as leaves, and each other node is an operator from Table

1. Weights are attached to each edge connecting a differentiable operator to its arguments

within the gray box, shown with dotted lines. Those weights, θ, are learned via gradient

descent using backpropagation. The final layer is fed into a linear model, y(ϕ(x)),
parameterized by β. This example model is composed of four sub-programs, or features,

varying in depth and composition.

La Cava and Moore Page 26

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
A) The steps of the FEAT algorithm. Execution begins with initialization and evaluation,

selection, variation, evaluation of offspring, and finally survival. B) The evaluation process

is shown. Individuals are evaluated and used to fit a linear model, and then gradient descent

is performed for a set number of iterations to learn the internal weights θ. The final model

and its loss, L(y, y), are returned.

La Cava and Moore Page 27

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3.
Properties of the PMLB benchmark datasets [60]. The blue points are datasets that were

used to benchmark variants of FEAT in Section 4.

La Cava and Moore Page 28

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4.
Mean 5-fold CV R2 performance for different crossover operators on the eight tuning

problems.

La Cava and Moore Page 29

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5.
Average pairwise representation correlation (Eqn. 4) for different crossover operators on the

eight tuning problems.

La Cava and Moore Page 30

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6.
Test rankings for different crossover probabilities on the eight tuning problems.

La Cava and Moore Page 31

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7.
Mean 5-fold CV R2 performance for different levels of feedback on the eight tuning

problems.

La Cava and Moore Page 32

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8.
Mean 10-fold CV R2 performance for various SO methods in comparison to other ML

methods, across the benchmark problems.

La Cava and Moore Page 33

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9.
Size comparisons of the final models in terms of number of nodes in the solutions.

La Cava and Moore Page 34

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10.
Mean pairwise correlations of the representations produced by final models of different

methods, in comparison to the correlations in the original attribute space (x).

La Cava and Moore Page 35

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 11.
Median test MSE rankings on the PMLB datasets. The box shows the quartiles of the

rankings with whiskers showing the rest of the distribution excluding outliers. Algorithms

are ordered top to bottom by best (lowest) to worst (highest) median ranking.

La Cava and Moore Page 36

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 12.
Wall clock time comparisons on the PMLB datasets. Runtime is the wall clock time for a

single training instance. Algorithms are ordered top to bottom by fastest to slowest.

La Cava and Moore Page 37

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 38

Table 1

Functions and terminals used to develop representations.

Continuous functions { +, −, *, /, ()2, ()3, (), sin, cos, exp, log, exponent, logit, tanh, gauss, relu}

Boolean functions { and, or, not, xor, =, <, ≤, >, ≥ }

Terminals {x}

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 39

Table 2

Hyperparameter values for FEAT in the experiments. “Maximum dimensionality” refers to the largest allowed

number of features (m).

Hyperparameter Values

probability of crossover (complement: mutation) [0,0.25,0.5, 0.75,1.0]

feedback (γ, Eqn. 2) [0, 0.25, 0.5, 0.75, 1.0]

type of feature crossover [Standard, ResXO, StageXO]

probability of feature crossover (complement: subtree [0.5, 0.75, 1.0]

crossover)

feedback softmax normalization [On, Off]

population size 500

generations 100 (200 for PMLB)

max stalled generations 10

max depth 6

maximum dimensionality min(50, 2 * |x|)

iterations of gradient descent 10

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 40

Table 3

Regression problems used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503

Concrete 8 1030

ENC 8 768

ENH 8 768

Housing 14 506

Tower 25 3135

UBall5D 5 6024

Yacht 6 309

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 41

Table 4

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of R2 scores for the methods across all tuning

problems. Bold: p <0.05.

Feat FeatResXO

FeatResXO 4.6e-01

FeatStageXO 3.5e-02 1.2e-01

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 42

Table 5

Best hyperparameter values for FEAT across the eight tuning problems.

Hyperparameter FEAT FEAT-ResXO FEAT-StageXO

probability of crossover 0.75 0.75 0.75

feedback 0.25 0.0 0.25

probability of feature crossover 0.75 0.5 0.5

feedback softmax normalization Off Off Off

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 43

Table 7

Algorithms from Orzechowski et. al. [61] with their parameter settings. The parameters in quotations refer to

their names in the scikit-learn implementations.

Algorithm name Parameter Values

eplex, afp, mrgp pop size / generations {100/1000,1000/100}

max program length / max depth {64 / 6}

crossover rate {0.2,0.5,0.8}

mutation rate 1-crossover rate

gsgp pop size / generations {100/1000,200/500,1000/100}

initial depth {6}

crossover rate {0.0,0.1,0.2}

mutation rate 1-crossover rate

eplex_lM pop size / generations {500/2000,1000/1000,2000/500}

max program length {100}

crossover rate {0.2,0.5,0.8}

mutation rate 1-crossover rate

AdaBoostRegressor ‘n_estimators’ {10, 100, 1000}

‘learning_rate’ {0.01, 0.1, 1, 10}

GradientBoostingRegressor ‘n_estimators’ {10, 100, 1000}

‘min_weight_fraction_leaf {0.0, 0.25, 0.5}

‘max-features’ {‘sqrt’,’k>g2’, None}

KernelRidge ‘kernel’ {‘linear’, ‘poly’, ‘rbf, ‘sigmoid’}

‘alpha’ {1e-4, 1e-2, 0.1, 1}

‘gamma’ {0.01, 0.1, 1, 10 }

LassoLARS ‘alpha’ { 1e-04, 0.001, 0.01, 0.1, 1 }

LinearRegression default default

MLPRegressor ‘activation’ {‘logistic’, ‘tanh’, ‘relu’}

‘solver’ {‘lbfgs’,’adam’,’sgd’}

‘learning_rate’ {‘constant’, ‘invscaling’, ‘adaptive’}

RandomForestRegressor ‘n_estimators’ {10, 100, 1000}

‘min_weight_fr action_leaf {0.0, 0.25, 0.5}

‘max-features’ {‘sqrt’,’log2’, None}

SGDRegressor ‘alpha’ {1e-06, 1e-04, 0.01, 1 }

‘penalty’ {‘12’, ‘11’, ‘elasticnet’}

LinearSVR ‘C’ {1e-06, 1e-04, 0.1, 1 }

‘loss’ {‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}

XGBoost ‘n_estimators’ {10, 50, 100, 250, 500, 1000}

‘learning_rate’ {1e-4, 0.01, 0.05, 0.1, 0.2}

‘gamma’ {0, 0.1, 0.2, 0.3, 0.4}

‘max_depth’ {6}

‘subsample’ {0.5, 0.75, 1}

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 44

Table 8

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of R2 scores for the FEAT variants across all

benchmarks. Bold: p <0.05.

ElasticNet Feat FeatCN FeatCorr FeatResXO FeatStageXO KernelRidge MLP RF

Feat 4.2e−14

FeatCN 1.6e−12 1.2e−02

FeatCorr 2.7e−12 1.1e−02 1.0e+00

FeatResXO 1.4e−14 1.0e+00 3.1e−02 7.2e−02

FeatStageXO 5.2e−13 1.0e+00 2.0e−01 9.4e−01 1.0e+00

KernelRidge 2.1e−12 7.3e−05 3.0e−02 6.6e−03 1.5e−05 1.3e−03

MLP 1.9e−11 7.7e−03 1.0e+00 1.0e+00 1.4e−03 9.1e−03 1.0e+00

RF 2.4e−09 2.5e−09 1.5e−05 7.3e−07 1.3e−08 1.8e−06 1.0e+00 9.9e−02

XGB 2.8e−14 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 2.0e−04 2.3e−02 6.5e−13

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 45

Table 9

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of sizes for the FEAT variants across all

benchmarks. Bold: p <0.05.

ElasticNet Feat FeatCN FeatCorr FeatResXO FeatStageXO MLP RF

Feat 1.4−13

FeatCN 4.1−16 9.5−08

FeatCorr 2.0−12 1.0e+00 1.2−07

FeatResXO 1.1−12 7.5−01 4.9−03 1.0e+00

FeatStageXO 3.9−16 9.3−09 1.0e+00 3.6−07 1.0−04

MLP 2.1−17 8.9−17 7.0−17 1.0−16 1.1−16 9.4−17

RF 4.7−20 7.6−17 7.3−17 1.0−16 1.1−16 4.3−17 6.4−17

XGB 2.3−17 8.4−17 9.7−17 1.1−16 1.1−16 8.5−17 1.0e+00 1.1−17

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

La Cava and Moore Page 46

Table 10

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of MSE scores for the methods across all

benchmarks. Bold: p <0.05.

Adaboost AFP EPLEX EPLEX-1M FEAT FEAT-
ResXO

FEAT-
StageXC

GradBoost GSGP KernelRidge Lasso LinReg LinSVR MLP MRGP RF SGD

AFP 1.2e−02

EPLEX 1.0e+00 7.3e
−08

EPLEX-1M 8.2e−09 9.4e
−12

3.4e−09

FEAT 2.6e−08 3.8e
−10

1.9e−06 1.0e+00

FEATResXO 1.8e−04 2.2e
−06

5.8e−04 5.0e−02 1.7e
−02

FEATStageXO 9.1e−08 8.2e
−10

4.1e−06 1.0e+00 1.0e
+00

5.8e
−03

GradBoost 1.5e−08 2.3e
−08

5.6e−03 3.7e−02 1.0e
+00

1.0e
+00

1.0e+00

GSGP 8.4e−11 2.6e
−07

4.1e−12 1.5e−14 8.1e
−14

5.1e
−13

2.3e−14 2.6e−14

KernelRidge 1.0e+00 1.5e
−03

1.0e+00 8.1e−04 2.1e
−02

1.0e
+00

1.1e−02 9.9e−01 1.4e
−14

Lasso 8.3e−04 1.0e
+00

1.9e−06 4.4e−12 4.5e
−10

3.5e
−07

4.8e−10 1.8e−08 2.1e
−02

8.6e−08

LinReg 1.1e−04 7.0e
−03

2.3e−07 3.7e−12 4.5e
−11

4.5e
−09

6.1e−11 1.7e−08 1.0e
+00

3.0e−09 1.0e
+00

LinSVR 1.1e−03 8.6e
−02

2.3e−06 4.6e−12 1.3e
−09

5.7e
−07

9.0e−10 2.6e−08 3.9e
−01

7.9e−09 1.0e
+00

1.0e
+00

MLP 2.6e−02 2.6e
−06

1.0e+00 1.0e+00 1.0e
+00

1.0e
+00

1.0e+00 1.0e+00 9.6e
−15

7.4e−01 6.8e
−07

2.0e
−08

1.3e−07

MRGP 1.0e+00 1.0e
+00

1.0e+00 1.1e−04 7.0e
−04

2.8e
−01

3.6e−04 2.1e−01 2.1e
−05

1.0e+00 2.3e
−01

2.5e
−02

1.5e−01 1.0e
+00

RF 7.9e−05 1.2e
−04

1.0e+00 7.4e−06 1.0e
−04

2.0e
−01

7.6e−05 2.3e−06 2.1e
−13

1.0e+00 4.7e
−06

4.4e
−06

1.3e−06 1.0e
+00

1.0e
+00

SGD 2.0e−06 6.4e
−05

1.9e−09 9.6e−13 2.7e
−12

1.5e
−09

1.3e−11 4.1e−11 1.0e
+00

2.6e−09 5.5e
−02

1.0e
+00

1.0e+00 1.8e
−00

4.5e
−03

2.8e
−09

XG Boost 2.1e−08 6.9e
−11

5.3e−05 1.0e+00 1.0e
+00

1.0e
+00

1.0e+00 8.9e−03 6.0e
−15

6.9e−03 1.3e
−10

6.4e
−10

2.2e−10 1.0e
+00

2.8e
−03

3.6e
−08

5.8e
−12

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

	Abstract
	Introduction
	Background
	Methods
	Feedback
	Variation
	Semantic Crossover

	Selection and Survival
	Objectives

	Connection to Neural Networks

	Experiment
	Comparison of crossover methods
	Comparison of all FEAT variants
	Benchmark comparison
	Metrics

	Results
	Comparison of crossover methods
	Comparison of FEAT Variants
	Benchmark comparison

	Discussion & Conclusion
	Appendix
	Table 6
	Fig. 13
	Fig. 14
	Fig. 15
	Fig. 16
	Fig. 17
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 7
	Table 8
	Table 9
	Table 10

