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Abstract

Genetic programming has found recent success as a tool for learning sets of features for regression 

and classification. Multidimensional genetic programming is a useful variant of genetic 

programming for this task because it represents candidate solutions as sets of programs. These sets 

of programs expose additional information that can be exploited for building block identification. 

In this work, we discuss this architecture and others in terms of their propensity for allowing 

heuristic search to utilize information during the evolutionary process. We investigate methods for 

biasing the components of programs that are promoted in order to guide search towards useful and 

complementary feature spaces. We study two main approaches: 1) the introduction of new 

objectives and 2) the use of specialized semantic variation operators. We find that a semantic 

crossover operator based on stagewise regression leads to significant improvements on a set of 

regression problems. The inclusion of semantic crossover produces state-of-the-art results in a 

large benchmark study of open-source regression problems in comparison to several state-of-the-

art machine learning approaches and other genetic programming frameworks. Finally, we look at 

the collinearity and complexity of the data representations produced by different methods, in order 

to assess whether relevant, concise, and independent factors of variation can be produced in 

application.
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1 Introduction

Genetic programming (GP) is a method that attempts to solve problems by identifying and 

integrating the components of programs that contribute to good solutions. When applied to 

classification and regression problems, the components of programs, i.e. its building blocks, 
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are analogous to engineered features. Because of this, we expect GP solutions to 

classification and regression problems to contain building blocks that explain the underlying 

factors of variation producing the observed response that is modelled. In the broader 

machine learning (ML) community, automatic engineering of feature spaces is referred to as 

representation learning [4] Representation learning is a fundamental challenge in ML due to 

its computational complexity and the importance of data representation to the quality of 

models that can be trained. Our interest here is a variant of GP we refer to as 

multidimensional GP, i.e. MGP. MGP makes the relationship between building block 

discovery and representation learning explicit by optimizing a set of programs, each of 

which is an independent feature in the ML model. In this paper we discuss why the MGP 

architecture is suited to the task of representation learning, and study several techniques for 

improving the quality of data representations that MGP can learn.

In order to assess the quality of data representations, we first must establish a notion of what 

makes a representation good. First and foremost, a good representation allows a model to be 

trained that generalizes to unseen data better than a model trained directly on the raw 

attributes. Second, a good representation identifies independent components of variation in 

the data that cause the process response. Third, an ideal representation is succinct to aid in 

interpretation and intelligibility. Ideally, a representation only has as many features as there 

are independent factors controlling the process. Both the methods developed in this paper 

and the related discussion are centered around these three motivations.

The paper summarizes and extends our previous work [46, 44] in which we proposed and 

developed a multidimensional GP framework called the Feature Engineering Automation 

Tool (FEAT). The paper is organized as follows. First we present a brief background on the 

many methods that have been proposed to apply GP to feature construction / representation 

learning, focusing on those techniques that use ML as a heuristic for identifying and 

promoting building blocks. We discuss different architectures that motivate our focus on 

MGP. We consider FEAT in the context of related GP and neural network methods. In 

Section 3 we propose a set of methods hypothesized to improve our ability to identify 

accurate, succinct and disentangled representations. These methods consist of new multi-

objective approaches as well as new semantic crossover operators. We conduct a series of 

experiments within this framework to study the effect of these methods on representation 

quality. We conduct an experiment at first on eight regression problems, considering full 

hyperparameter tuning, and analyze the representations that are produced with and without 

the new crossover methods. Finally, we benchmark the new methods against many ML and 

GP methods on more than 100 open source regression problems. We find that the new 

methods of crossover lead to state-of-the-art results for regression. We discuss the 

implications of these results and offer viewpoints for further analysis in the conclusions.

2 Background

The GP community has long been interested in feature construction, and it has been studied 

with various architectures. In fact, if the goal is to identify a single feature (or multiple 

features in the multiclass case [58]), GP can be applied directly without major changes [55]. 

These approaches make use of information-theoretic measures to estimate how good a 
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program is likely to be as a feature in a larger model. Despite requiring minimal changes to 

GP’s methodology, the optimization of single features lacks the ability to control for the 

multivariate context in which they are typically used.

An alternative approach that has been studied is to treat each individual in the population as 

a feature, and to optimize an ensemble model of the entire population [12, 2, 1, 52, 42, 43]. 

With this approach, only a single regression model must be trained per generation, which 

demands minimal overhead. However, it is not well understood how to properly select and 

vary the features evolved by such a process. Since each individual is a feature, its fitness 

depends heavily on the current population. Furthermore, a desirable set of features should be 

orthogonal to each other so that the representation is well-conditioned; in contrast, 

convergent evolutionary processes aim to make each individual, i.e. feature, the same. To 

overcome issues of collinearity and a convergent search process, the following ideas have 

been proposed. In evolutionary feature synthesis (EFS) [2], features are selected 

proportionally to their coefficient in a regularized linear model; in order to prevent 

multicollinearity, correlation thresholds are implemented during variation to keep children 

different from their parents. In the feature engineering wrapper (FEW) [43, 42], 

multicollinearity is selected against by using a survival version of ϵ-lexicase selection to 

choose features. In Kaizen GP [12, 52], individuals are only added to the model if they pass 

a significance test, in a hill climbing fashion. Another option is to not use an evolutionary 

updating scheme at all, but rather to create a large set of random features and fit an ML 

model to this, as in Fast Function Extraction (FFX) [50]. More recently, Vanneschi et. al. 

explored one step linear combinations of random programs [78], experimentally showing 

that they often lead to overfitting.

Rather than building a model from the entire population, one could apply an ML method to 

the entire program trace as a means of identifying building blocks [38]. Multiple regression 

GP (MRGP) [1] defines a program’s behavior as the Lasso [76] estimate generated over the 

entire program’s trace. One downside of this approach is the likely presence of highly 

correlated features in the program trace, leading to an ill-conditioned regression matrix. In a 

similar vein to MRGP, Behavioral GP [39] extracts information from the entire program 

trace, this time using a decision tree algorithm to identify important building blocks, which 

are stored in an archive for re-use. In both algorithms, the key insight is to use ML with 

program traces to undo the complex masking effect that program execution has on the 

behavior of building blocks that are downstream from other operations in the program (for 

further discussion on the topic of program traces see [37]).

The multidimensional framework used by our studied approach, MGP, is in some sense in 

between the ensemble techniques and the program trace techniques described above. 

Individuals are represented as sets of separate subprograms, usually trees. Unlike 

population-wide models, the fitness of each individual is directly related to its model 

predictions, and individuals in the population benefit from typical evolutionary optimization 

processes. Unlike program trace-based methods, by using multi-output individuals, MGP 

exposes independent components of the total program behavior to the ML process that 

produces the model. As a result, building blocks are easier to isolate and share among the 

population in direct ways.
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Examples of MGP include Krawiec’s method [36], multigene GP [68, 69, 22], M2GP [31], 

M3GP [56], e-M3GP [70], M4GP [45], and FEAT [46]. In all of these methods, individuals 

in the population produce a set of corresponding outputs that are then fed into a 

deterministic ML method to produce the program’s regression or classification estimates. In 

the case of M2GP, M3GP, and M4GP, classification proceeds using a nearest centroid 

classifier [77], whereas linear regression methods are used for regression with M3GP [57] 

and FEAT.

Although a number of methods have been proposed in the MGP paradigm, they have not 

made much use of the semantics of independent building blocks in each program that this 

architecture creates. An exception is our work on FEAT [46, 44], in which we use the 

coefficient magnitude to weight probabilities of mutation. In our first study on FEAT [46], 

we proposed using multiple objectives to leverage the architecture of MGP to a larger degree 

than in previous studies. In our second study [44], we looked at semantic variation operators 

to achieve the same goal. The main contributions of this paper are 1) to summarize the 

proposed methods and findings of previous papers, 2) extend the analysis and description of 

FEAT, and 3) empirically compare all the variants of FEAT that have been proposed to each 

other, and to state-of-the-art GP and ML methods.

3 Methods

The goal of regression is to build a predictive model y(x) using N paired examples 

T = xi, yi i = 1
N . The regression model y(x) associates the inputs x ∈ ℝd with a real-valued 

output y ∈ ℝ. The goal of feature engineering / representation learning is to find a new 

representation of x via a m-dimensional feature mapping ϕ(x):ℝd ℝm, such that the model 

y(ϕ(x)):ℝm ℝ outperforms the model y(x) by some pre-defined metric.

In MGP, each individual in the population is a candidate representation, ϕ(x), consisting of a 

list of programs [ϕ1, … , ϕm]. As an example, the individual

+ x1 x2 , cos x3 , exp  cube  x1

would encode a representation with three features: (x1 + x2), cos(x3), and exp x1
3 . 

Throughout the paper, we refer to these subprograms ϕ as features, and use the word 

attribute to refer to the independent variables in x.

MGP methods share this representation in common, and differ in terms of 1) the ML method 

used to generate the model prediction, i.e. y(ϕ); 2) the crossover and mutation operators 

used; 3) the treatment of internal program weights; and 3) the selection process used.

We study a recent MGP method named FEAT [46], in which candidate features are 

parameterized by weights, θ, and used to fit a linear model
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y = ∑
i = 1

m
βiϕi(x, θ) (1)

The coefficients [β1, … , βm] are determined using ridge regression [29]. Note that each ϕ is 

normalized to zero mean, unit variance before ridge regression is applied. The fitness of 

each individual in FEAT is its mean squared error (MSE) on the training set.

FEAT constructs trees from elementary boolean- and continuous-valued functions and 

literals (see Table 1). FEAT differs from traditional symbolic regression (SR) which treats 

the parameters θ as leaves. Instead, these weights are attached to the edges of all 

differentiable operators and updated each generation via gradient descent (see Fig. 1).

In Fig. 2 we show the execution steps involved in FEAT, described here. FEAT uses a typical 

μ + λ evolutionary updating scheme, where μ = λ = P. The method optimizes a population 

of potential representations, ℕ = n1…nP , where n is an “individual” in the population, 

iterating through these steps:

1. Fit a linear model y = xTβ . Create an initial population ℕ consisting of this initial 

representation, ϕ = [x1, … , xd], along with P – 1 randomly generated 

representations. To initialize a random representation, a number of features (m) 

is chosen uniform-randomly from a user-specified max dimensionality. For each 

feature, the well-known “grow” method is used to build a program, with one 

notable change: the leaves of each program are sampled from [x1, … , xd] 

proportionally to β . See Section 3.1 for more details.

2. While the stop criterion is not met:

a. Select parents ℙ ⊆ ℕ using a selection algorithm (see Section 3.3).

b. Apply variation operators to parents to generate P offspring O; 

ℕ = ℕ ∪ ℚ (see Section 3.2).

c. Reduce ℕ to P individuals using a survival algorithm (see Section 3.3).

3. Select and return n ∈ ℕ with the lowest error on a hold-out validation set.

Individuals are evaluated using an initial forward pass, after which each representation is 

used to fit a linear model (Eqn. 1) using ridge regression [29]. The weights of the 

differentiable features in the representation are then updated using stochastic gradient 

descent.

In the following sections, we describe the specific components of FEAT, including the 

feedback mechanism, variation, and the selection and survival algorithms. We also present 

the variations of these methods that are the subject of experiments later in the paper.
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3.1 Feedback

In order to promote building blocks, FEAT uses feedback from the ML process to bias the 

variation step. In a nutshell, the probability of a feature in ϕ being mutated or replaced by 

crossover is inversely related the magnitude of its coefficient β in Eqn. 1. Let 

βi(n) = |βi|/∑i
m |βi|. The normalized coefficient magnitudes β ∈ [0, 1] are to used define 

softmax-normalized probabilities. The probability of mutation for feature i in program n is 

denoted P Mi(n), and defined as follows:

si(n) = exp 1 − βi /∑
i

m
exp 1 − βi

PMi(n) = γsi(n) + (1 − γ) 1
m (2)

Here, γ is a parameter that controls the amount of feedback from the weights that is used to 

bias the selection of feature i for mutation. When γ is zero, the 1/m term in Eqn. 2 gives 

uniform mutation probability across features. In our experiments, we tune γ, and also test 

whether the softmax normalization of si(n) is useful.

3.2 Variation

During variation, the representations are perturbed using a set of mutation and crossover 

methods. The baseline version of FEAT chooses among 6 variation operators that are as 

follows.

• Point mutation changes a node type to a random one with matching output type 

and arity.

• Insert mutation replaces a node with a randomly generated subtree of depth 1.

• Delete mutation removes a feature or replaces a sub-program with an input node, 

with equal probability.

• Insert/Delete dimension adds or removes a new feature.

• Sub-tree crossover replaces a sub-tree from one parent with the sub-tree of 

another parent.

• Dimension crossover swaps two features between parents.

The exact probabilities of each variation operator will affect the performance of the 

algorithm, but for the sake of simplicity we use each operator with uniform probability. In 

the following section, we describe semantic crossover operators that are analyzed for their 

usefulness in our experiments.

3.2.1 Semantic Crossover—The following two crossover methods are called semantic 
because they use information about the program’s outputs to determine the recombination 

that occurs to produce a child from two parents. Both operators are based on the following 
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observations. We have two parent representations, ϕp1 and ϕp2, with corresponding model 

outputs yp1 and yp2 that are linear combinations of their respective representations, as in 

Eqn. 1. We want to produce the best combination of ϕp1 and ϕp2 for the child representation 

ϕc. Basically we can treat this as a feature selection problem, where we have features ϕA = 

ϕp1 ∪ ϕp2 and we want to pick the best. On one hand we could simply concatenate the 

feature sets, and generate a new model y ϕA , which is the linear model fit to all features of 

both parents. This approach would lead to exponential growth in offspring, which would run 

against our goal of lowering complexity.

In lieu of that approach, we propose here what are essentially regularized versions of 

geometric semantic crossover [54] that constrain the number of features in the offspring to 

be of equal cardinality to ϕp0, i.e. |ϕc| = |ϕp1|. The first operator, best residual fit crossover 

(ResXO), chooses a feature from ϕp1 to be replaced, and then chooses the feature in ϕp2 that 

best approximates the residual of the model after removing this feature. The second operator, 

stagewise crossover (StageXO), uses forward stagewise regression [32] as a feature selection 

method to iteratively construct the offspring.

Best residual fit crossover (ResXO) Given parents p1 and p2, ResXO swaps a feature in p1 

with the feature in p2 that most closely approximates the residual error of p1 with the 

selected feature removed. The child representation is denoted as ϕc. The steps are as follows:

1. Pick ϕd from ϕp1 using probabilities given by Eqn. 2.

2. Calculate the residual of p1 without ϕd:

r = y − yp1 − βdϕd

3. Choose ϕ* from ϕp2, which is the feature most correlated with r.

4. ϕc = ϕp1 with ϕd replaced by ϕ*.

ResXO can be likened to a special case of semantic backpropagation [17, 62, 26], since it 

seeks to replace a component of the parent program with a subprogram most closely 

matching the desired semantics, given by r. Within the MGP framework, this 

backpropagation is very simple, and does not require complex inversion operations to be 

introduced. We expect that ResXO will also lead to lower correlations between features in ϕc 

than in ϕp1. To understand why, consider that

r = y − ∑
ϕi ∈ ϕp1\ϕd

βiϕi

Therefore r should have low correlation with the rest of the p1’s representation. Assuming 

the replacement feature from ϕp2 closely matches r, it should also be uncorrelated with {ϕp1 

\ ϕd}. Note that ResXO may produce an individual with higher squared error than its parents, 

since ϕd may be more correlated with r than ϕ*.

Forward stagewise crossover (StageXO) Rather than restricting crossover to the replacement 

of a single feature, the crossover operator can be used to compile the set of features that 
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iteratively reduce the target error using a forward stagewise crossover method we call 

StageXO. The procedure is as follows:

1. Set the initial residual equal to the target: r = y. Center means around zero for all 

ϕ.

2. Set ϕA to be all subprograms in ϕp1 and ϕp2.

3. While |ϕc| < |ϕp1|:

a. Pick ϕ* from ϕA which is most correlated with r.

b. Compute the least squares coefficient b for ϕ* fit to r.

c. Update r = r – bϕ*

d. Add ϕ* to ϕc.

e. Remove ϕ* from ϕA.

Unlike feature selection methods like forward/backward stepwise selection, forward 

stagewise selection only calculates the weight of a single feature at a time, and is thus more 

lightweight. The downside of this approach in the context of regression is that it generally 

takes more iterations to reach the least squares coefficients of the complete model [21]. In 

our case this is unimportant, since we are only interested in quickly choosing the most 

important features, which are then used to fit a multiple linear regression model. We expect 

the child representation returned by StageXO to contain uncorrelated features since the 

residual is updated each iteration to remove the portion of the response explained by 

previous features.

Forward stagewise regression, and therefore the StageXO operator, is closely related to 

boosting [20]. In both cases the residual is iteratively reduced by adding model components 

(weak learners in the case of boosting, and features/building blocks in our case). The 

relationship between forward stagewise regression, boosting, and regularized linear models 

is expounded upon in [21]. The stagewise additive modeling paradigm is also used by a 

recent GP technique called Wave [51], in which GP runs are iteratively trained on residuals 

of previous runs. The insight here is that the unique representation of programs in MGP 

allows the same general methodology to be exploited for combining partial solutions during 

crossover, rather than as a post-run ensemble method.

Let us briefly consider the computational complexity of these operators. Both operators 

scale linearly with dataset size, N. Let M be the maximum dimensionality of an individual, a 

user-specified parameter defined for the experiments in Table 2. ResXO scales linearly with 

M (due to step 3), whereas StageXO scales quadratically with M (due to Step 3.(a)). 

Therefore we expect ResXO to be quicker in practice, a hypothesis we test in the 

experiments of Section 4.

3.3 Selection and Survival

The selection step selects P parents that will be used to generate offspring. Following 

variation, the population consists of 2P representations of parents and offspring. The survival 

step is used to reduce the population back to size P, at which point the generation is finished. 
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We empirically compared five algorithms for selection and survival: 1) ϵ-lexicase selection 

(Lex) [47], 2) non-dominated sorting genetic algorithm (NSGA2) [13], 3) a novel hybrid 

algorithm using Lex for selection and NSGA2 for survival, 4) simulated annealing [34], and 

5) random search. These comparisons are described in Appendix Section 9.2. We found that 

the hybrid algorithm (3) performed the best; it is described below.

Parents are selected using Lex. Lex was proposed for regression problems [47, 41] as an 

adaption of lexicase selection [71] for continuous domains. The version of ϵ-lexicase 

selection we refer to and describe here is the “semi-dynamic” version proposed previously 

[41]. Under ϵ-lexicase selection, parents are chosen by filtering the population according to 

randomized orderings of training samples, with the ϵ threshold defined relative to the sample 

loss of the population. This filtering strategy scales the probability of selection for an 

individual based on the difficulty of the training cases on which the individual performs 

well. Lex has shown strong performance among SR methods in recent tests, motivating our 

interest in studying it [61].

Survival is conducted using the survival sub-routine of NSGA2, a popular strategy for multi-

objective optimization [13]. NSGA2 applies preference for survival using Pareto dominance 

relations. An individual (ni) is said to dominate another (nj) if, for all objectives, ni performs 

at least as well as nj, and for at least one objective, ni strictly outperforms nj. The Pareto 

front is the set of individuals in ℕ that are non-dominated in the population and thus 

represent optimal trade-offs between objectives found during search. Individuals are 

assigned a Pareto ranking that specifies the number of individuals that dominate them, 

thereby determining their proximity to the front.

The survival step of NSGA2 begins by sorting the population according to their Pareto front 

ranking and choosing the lowest ranked individuals for survival. To break rank ties, NSGA2 

assigns each individual a crowding distance measure, which quantifies an individual’s 

distance to its two adjacent neighbors in objective space. If a rank level does not completely 

fit in the survivor pool, individuals of that rank are sorted by highest crowding distance and 

added in order until P individuals are chosen.

3.3.1 Objectives—In our study, we consider three objectives corresponding to three 

goals:

1. Reduce model error.

2. Minimize complexity of the representation.

3. Minimize the entanglement of the representation.

The objectives related to the first two goals are used whenever NSGA2 is used for selection 

or survival in any version of FEAT explored in this paper. For the final goal of minimizing 

entanglement, we experiment with the addition of one of two different objectives, described 

at the end of this section.

The first objective is always the mean squared loss for individual n, and the second is the 

complexity of the representation. Regarding complexity, many definitions come to mind: 
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one could look at the number of operations in a representation, or look at the behavioral 

complexity of the representation (e.g. using the order of a best-fit polynomial [79]). The 

complexity definition we use is similar to that used by [35]. The basic notion is to assign a 

complexity weight to each operator (see Table 1), with higher weights assigned to operators 

considered more complex. If the weight of operator o is co, then the complexity of an 

expression tree beginning at node o is defined recursively as

C(o) = co ∑
a = 1

k
C(a) (3)

where node o has k arguments, and C(a) is the complexity of argument a. The complexity of 

a representation is then defined as the sum of the complexities of its output nodes. The goal 

of defining complexity in such a way is to discourage deep sub-expressions within complex 

nodes, which are often hard to interpret. It is important to note that the choice of operator 

weights is bound to be subjective, since we lack an objective notion of interpretability.

We test the third objective using two different metrics: the correlation of the transformation 

matrix ϕ(x) and its condition number. These metrics are defined below.

Disentanglement is a term used to describe the notion of a representation’s ability to 

separate factors of variation in the underlying process [4]. Although a thorough review is 

beyond the scope of this section, there is a growing body of literature addressing 

disentanglement, primarily with unsupervised learning and/or image analysis [53, 80, 28, 24, 

27, 40]. There are various ways to quantify disentanglement. For instance, [5] proposed 

measuring disentanglement as the difference between geodesic and Euclidean distances 

among points on a manifold (i.e. training instances). If the latent structure is known, the 

information-theoretic metrics proposed by [15] may be used. In the case of regression, a 

disentangled representation ideally contains a minimal set of features, each corresponding to 

a separate latent factor of variation, and each orthogonal to each other. In this regard, we 

attempt to minimize the collinearity between features in ϕ as a way to promote 

disentanglement. We tested two measurements of collinearity (a.k.a. multicollinearity) in the 

derived feature space. The first is the average squared Pearson’s correlation among features 

of ϕ, i.e.,

Corr(ϕ) = 1
N(N − 1) ∑

ϕi, ϕj ∈ ϕ, i ≠ j

cov ϕi, ϕj
σ ϕi σ ϕj

2
(4)

The motivation to square the Pearson’s correlation is the observation that two negatively 

correlated features are equally undesirable to two positively correlated features. Eqn. 4 is 

relatively inexpensive to compute but only captures bivariate correlations in ϕ. As a result 

we also test the condition number (CN). Consider the N × m representation matrix Φ, where 

each column is the output of a feature. The CN of Φ is defined as
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CN(ϕ) = μmax(Φ)
μmin(Φ) (5)

where μmax and μmin are the largest and smallest singular values of Φ. Unlike Corr, CN can 

capture higher-order dependencies in the representation. CN is also related directly to the 

sensitivity of Φ to perturbations in the training data [3, 9], and thus captures a notion of 

model invariance explored in previous work by [25]. Another common measure of 

multicollinearity, the variance inflation factor [59], is likely to be too expensive to compute 

for our purposes.

3.4 Connection to Neural Networks

In addition to learning internal weights via gradient descent, FEAT includes instructions 

typically used as activation functions in neural networks (NN), e.g. tanh, sigmoid, logit and 

relu nodes, in addition to elementary arithmetic and boolean operators. Although a fully 

connected feedforward NN could be represented by this construction, representations in 

FEAT are biased to be thinly connected by their tree-based initialization. Because of this 

architecture, FEAT can be thought of as a method for evolving neural network architectures. 

The idea to evolve NN architectures is well established in literature, and is known as 

neuroevolution. Popular methods of neuroevolution include neuroevolution of augmenting 

topologies (NEAT[75] and Hyper-NEAT[74]), and compositional pattern producing 

networks [72]. The aforementioned approaches eschew the parameter learning step common 

in other NN paradigms, although others have developed integrations [16]. In addition, they 

have been developed predominantly for other task domains such as robotics and control [23], 

image classification [66, 65], and representation learning [30, 10]. Reviews of these methods 

are available [19, 73]. Neuroevolution is a part of a broader research field of neural 

architecture search (NAS) [81, 48, 49]. NAS methods vary in approach, including for 

example parameter sharing [64], sequential model-based optimization [49], representation 

learning [81], and greedy heuristic strategies [11].

4 Experiment

Our experiment consists of three stages. First, we conduct a robust study of FEAT with and 

without the semantic crossover operators introduced in Section 3.2.1. In this study we 

simultaneously vary the hyperparameters related to variation in order to analyze the results 

in detail for eight regression problems. In the second study, we compare the use of additional 

objectives (Section 3.3.1), the use of semantic crossover, and state-of-the-art ML methods 

across 100 benchmark regression problems from the Penn ML Benchmark (PMLB) [60]. 

The properties of these datasets are shown in Fig. 3. In the final study, we compare FEAT, 

FEATResXO, and FEATStageXO to results from a recent large benchmark study of SR 

methods [61] utilizing the same benchmark resource.

In addition to these studies, we examine the FEAT results in detail for one of the benchmark 

datasets. For this dataset we plot the final population of models, illustrate model selection 

and compare the resultant features to results from linear and ensemble tree-based results. 

This gives practical insight into the method and provides a sense of the intelligibility of an 
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example representation. The results of this illustrative example are given in the Appendix 

Section 9.3.

4.1 Comparison of crossover methods

Despite several MGP methods having been proposed, there has not been a systematic study 

of the effect of variation operators on the performance of this family of methods. To fill this 

gap, and to properly analyze the new methods introduced in this paper, we performed a grid 

search of variation hyperparameters on eight regression problems. The hyperparameters that 

were varied are shown in Table 2.

Feedback softmax normalization refers to the softmax transformation in Eqn. 2; we tested 

for whether this normalization, which assumes a multinomial distribution of probabilities, 

was useful. The eight comparison problems are listed in Table 3.

4.2 Comparison of all FEAT variants

In the second study we compare all FEAT variants to four state-of-the-art ML methods. This 

study includes the assessment of additional objectives that explicitly reward disentangled 

representations as described in Section 3.3.1. For each method we perform hyperparameter 

tuning as shown in Table 6 in the Appendix Section 9.1. We compare all of the FEAT 

variants to XGBoost [7], multilayer perceptron (MLP), ElasticNet, kernelized ridge 

regression, and random forests (RF). We assess the methods in terms of their R2 test set 

scores as well as the complexity of their solutions.

At the beginning of model training, FEAT sets aside 25% of the shuffled training data for 

validation and final model selection. The population’s median validation fitness is also used 

to terminate training if it stops improving for a set number of generations (see “max stalled 

generations” in Table 2). Otherwise, we limit FEAT’s optimization to 200 iterations or 60 

minutes, whichever comes first. All runs are conducted on a heterogeneous computing 

cluster, with each training instance run on a single 2.6 GHz processor with a maximum of 12 

GB of RAM. For each method, we use grid search to tune the hyperparameters with 10-fold 

cross validation (CV). We use the mean cross-validation coefficient of determination (R2) 

for assessing performance, defined as:

R2(y, y) = 1 −
∑i yi − yi

2

∑i yi − y 2 (6)

Where y is the mean of the data labels y. In our results we report the CV scores for each 

method using its best hyperparameters. The algorithms are ranked on each dataset using 

their median CV score over 5 randomized shuffles of the dataset. For comparing complexity, 

we count the number of nodes in the final model produced by each method for each trial on 

each dataset. Note that this complexity definition is different (and simpler) than that used as 

an objective in FEAT, i.e. Eqn. 3. To quantify the “entanglement” of the feature spaces, we 

report Eqn. 4 in the raw data and in the final hidden layer of FEAT and MLP models. We 

also test two additional versions of Feat, denoted FeatCorr and FeatCN, that include a third 

objective corresponding to Eqn. 4 and 5, respectively.
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4.3 Benchmark comparison

In the final study, we compared FEAT with each crossover variant to 15 other methods: 5 GP 

methods [6, 1, 67, 41] and 10 ML methods from scikit-learn [63]. The 5 GP methods we 

compared to are:

• Geometric Semantic GP (GSGP) [6]

• MRGP [1]

• Age-fitness Pareto Optimization (AFP) [67]

• ϵ-lexicase selection (EPLEX) [41]

• ϵ-lexicase selection with 1 million evaluations (EPLEX-1M) [41]

These methods were benchmarked on 94 of the open-source datasets collected in the Penn 

ML Benchmark [60]. We used results from Orzechowski et. al.’s benchmark analysis [61] as 

a comparison, and followed the same validation procedure. Each comparison method 

underwent hyperparameter tuning using 5-fold cross validation on a 75% split of the training 

set, and was then tested on a 25% test fold. The hyperparameters are detailed in Table 1 of 

the original work [61]. This process was repeated for 10 trials. GP methods were given 

100,000 evaluations, apart from EPLEX-1M which used 1 million. For FEAT, we did not re-

tune the hyperparameters, instead using the values determined from the hyperparameter 

tuning experiment.

4.4 Metrics

As mentioned earlier, we consider there to be three over-arching goals when learning a 

representation. The first is that ϕ(x) leads to a model with a low generalization error. To 

measure this, we compare the mean squared error (MSE) and coefficient of determination 

(R2) of each model output on the test set. We also wish to minimize the complexity of the 

representation. To measure the complexity of solutions in FEAT, we count the total number 

of nodes in the final representation. For comparison to XGBoost, we count the number of 

nodes in the trees, and for comparison to MLP, we count the number of nodes in the 

network. Finally, we want a representation that is “disentangled”, meaning that each feature 

of ϕ is as orthogonal to the others as possible. We use this Eqn. 4 to compare the 

entanglement of final representations across selection methods.

5 Results

The comparison of crossover methods are presented first. In addition to test score reporting, 

we plot various views of the data with respect to different hyperparameters, and also look at 

representation correlations in the resultant models and statistical comparisons. The 

subsequent section compares the use of additional objectives within FEAT to the use of 

semantic crossover; these comparisons include ML benchark methods as well. We include 

comparisons of the final model sizes and their correlations in this section. Finally, in the last 

section we compare FEAT, FEATResXO and FEATStageXO to the set of results from [61]. 

This section includes score comparisons and runtime comparisons.
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5.1 Comparison of crossover methods

Prediction comparisons for each crossover method are shown in Fig. 4 for the eight tuning 

problems. The plot shows the mean test fold R2 value for the tuned estimator, summarized 

across trials. In general one can see that StageXO produces the most accurate results, 

followed by ResXO. Across the eight problems, StageXO significantly outperforms standard 

crossover (p <0.035); the pairwise statistical comparisons are given in Table 4.

We also looked at the correlation of the representations produced by the different crossover 

methods, shown in Fig. 5. We confirmed our hypotheses that ResXO and StageXO would 

produce less correlated representations than the traditional crossover operator.

The best values for each tuned parameter is shown in Table 5. We found that softmax 

normalization did not improve the feedback probabilities. Across problems, the best 

crossover/mutation fraction was found to be 0.75 (Fig. 6), with a feature crossover rate of 

0.75 for Feat and 0.5 for ResXO and StageXO. The best feedback value was problem 

dependent, as shown in Fig. 7. Since the feedback essentially controls the amount of 

exploration versus exploitation, it stands to reason that the ideal setting of this parameter 

would be problem dependent. Feedback levels of 0.25 were best for FEAT and 

FEATStageXO, and no feedback was best for FEATResXO. For the ResXO operator, this 

corresponds to choosing the feature to swap out of the parent at random.

5.2 Comparison of FEAT Variants

The score statistics for each of the FEAT variants and other methods are shown in Fig. 8 

across 100 datasets from PMLB (Fig. 3). Full statistical comparisons are reported in 

Appendix 9.4. Overall, FEAT and XGBoost produce the best predictive performance across 

datasets without significant differences between the two (p=1.0). FEAT significantly 

outperforms MLP, RF, KernelRidge and ElasticNet (p ≤7.7e-03), as does XGBoost (p 
≤2.3e-02). Among FEAT variants, FEATStageXO has the highest overall median R2 value, 

although the differences are not significant.

As measured by the number of nodes in the final solutions, the models produced by FEAT 

are significantly less complex than XGBoost, RF, and MLP, as shown in Fig. 9 (p <1e-16). 

FEAT’s final models tend to be within 1 order of magnitude of the linear models 

(ElasticNet), and 2–4 orders of magnitude smaller than the other non-linear methods. 

Among FEAT variants there are a few significant differences (see Table 9), albeit with small 

effect sizes as noted in Fig. 9.

We plot the mean pairwise correlations between features in the final representations across 

all problems in Fig. 10. We find that the use of objectives that minimize correlations 

between features (FeatCN, FeatCorr) have a small effect on minimizing the correlations in 

the resultant feature spaces for these problems. Interestingly, we see an opposite effect for 

the semantic variation operators on these problems - they tend to produce feature spaces that 

are more highly correlated than those produced by FEAT, unlike the results on the 

comparison problems in Fig. 5. Compared to the correlations in the final layer of trained 

MLP models, the FEAT variants tend to produce more entangled representations, indicating 

room for improvement.
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5.3 Benchmark comparison

The comparisons of FEAT to 15 other methods is shown in Fig. 11. In this figure, each 

boxplot shows the distribution of rankings (in terms of test MSE) over all datasets for each 

method. Across problems, FEAT and FEATStageXO achieves a nearly identical ranking to 

EPLEX-1M, which is ϵ-lexicase selection run for 1 million evaluations. Note that FEAT 

achieves these similar results using 100,000 evaluations. However, the additional complexity 

of fitting ML models to each individual makes the evaluation of each individual in FEAT 

more costly than traditional GP. Therefore wall clock times shown in Fig. 12 reflect this, 

showing that the FEAT wall clock times sit somewhere between the methods that ran for 

100,000 evaluations (GSGP, AFP, MRGP, EPLEX) and 1 million evaluations (EPLEX-1M). 

FEATResXO and FEATStageXO are slower, due to the additional complexity of semantic 

crossover.

A Friedman test of the MSE rankings across problems indicates significant differences. 

Table 10 shows post-hoc pairwise Wilcoxon signed rank tests of the results. FEAT, 

FEATResXO, and FEATStageXO all significantly outperform the other GP-based methods 

run for 100,00 evaluations. There is no significant difference found between the FEAT 

variants, EPLEX-1M, XGBoost, GradBoost, or MLP. The FEAT variants significantly 

outperform all other ML methods across the benchmark problems.

6 Discussion & Conclusion

In this paper we have argued that MGP is a useful, appropriate and interesting architecture 

of GP for learning feature spaces for regression. Unlike other approaches within GP to 

tackle representation learning, MGP is exposes independent components of programs, i.e. 

evolving features, to the search process. This property allows for the exploitation of 

additional information in both the variation and evaluation steps. Here, we have proposed an 

MGP approach to regression, FEAT, that borrows concepts from NN learning and have used 

it as a test bed for new methods.

We proposed two semantic crossover methods in this work. One of these methods, based on 

stagewise regression, mimics forward stagewise selection to select and propagate 

components of parents into offspring. We find that this method, in terms of average ranking 

of test R2 values, gives the best results of all tested ML methods across a set of 100 

regression problems, varying in size and dimensionality. We find conflicting pieces of 

evidence regarding the behavior of StageXO in terms of the collinearity of representations it 

produces; on some sets it is able to reduce collinearity, but over a broader set of problems 

tends to result in more collinearity.

We also proposed to encourage the orthogonality of data representations by including 

additional fitness objectives during survival. We tested both average pairwise correlation and 

the condition number of the representation matrix as metrics in this regard. Neither objective 

had a significant effect on the performance of FEAT, and had a mild effect on reducing the 

collinearity of representations in the main experiment.
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With these results in mind, it seems clear that further work should be dedicated to exploring 

methods for addressing collinearity in the MGP framework. There are many possibilities for 

reducing collinearity during variation. One thought is to try to prune collinear features with a 

mutation operator that removes the feature from the collinear pair that is less correlated with 

the data label. Another idea is to test different termination criteria for StageXO that may lead 

to less collinearity (recall that we terminate this crossover step when the offspring reaches 

the size of its root parent). Another approach is to produce offspring from more than two 

parents, as is done in recent work [78, 18]. Moving beyond variation, it may be possible to 

achieve lower representation entanglement through a post-processing step. In any case, the 

strong performance of FEAT on existing benchmarks will hopefully motivate further 

research within the MGP framework.
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9: Appendix

9.1 Additional Experiment Information

Table 6 details the hyperparameters for each method used in the experimental results 

described in Sections 4 and 5.

9.2 Comparison of selection algorithms

Our initial analysis sought to determine how different SO approaches performed within this 

framework. We tested five methods: 1) NSGA2, 2) Lex, 3) LexNSGA2, 4) Simulated 

annealing, and 5) random search. The simulated annealing and random search approaches 

are described below.

Simulated annealing Simulated annealing (SimAnn) is a non-evolutionary technique that 

instead models the optimization process on the metallurgical process of annealing. In our 

implementation, offspring compete with their parents; in the case of multiple parents, 

offspring compete with the program with which they share more nodes. The probability of 

an offspring replacing its parent in the population is given by the equation

Psel no np, t = exp F np − F no
t (7)

The probability of offspring replacing its parent is a function of its fitness, F, in our case the 

mean squared loss of the candidate model. In Eqn. 7, t is a scheduling parameter that 

controls the rate of “cooling”, i.e. the rate at which steps in the search space that are worse 

are tolerated by the update rule. In accordance with [34], we use an exponential schedule for 

t, defined as tg = (0.9)gt0, where g is the current generation and t0 is the starting temperature. 

t0 is set to 10 in our experiments.
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Random search We compare the selection and survival methods to random search, in which 

no assumptions are made about the structure of the search space. To conduct random search, 

we randomly sample S using the initialization procedure. Since FEAT begins with a linear 

model of the process, random search will produce a representation at least as good as this 

initial model on the internal validation set.

Table 6

Comparison methods and their hyperparameters for the comparisons in Section 4.2. Tuned 

values denoted with brackets.

Method Setting Value

FEAT Population size 500

Termination criterion 200 generations, 60 minutes, or 50 iterations of stalled 
median validation loss

Max depth 10

Max dimensionality 50

Objectives {(MSE,C), (MSE,C,Corr),(MSE,C,CN)}

Feedback (f) { 0.25, 0.5, 0.75 }

Crossover/mutation ratio { 0.25, 0.5, 0.75 }

Batch size 1000

Learning rate (initial) 0.1

SGD iterations / individual / generation 10

MLP Optimizer {LBFGS, Adam [33]}

Hidden Layers {1,3,6}

Neurons {(100,), (100,50,10),

(100,50,20,10,10,8)}

Learning rate (initial) {1e-4, 1e-3, 1e-2}

Activation {logistic, tanh, relu}

Regularization L2, α = {1e-5, 1e-4, 1e-3}

Max Iterations 10000

Early Stopping True

XGBoost Number of estimators {10, 100, 200, 500, 1000}

Max depth {3, 4, 5, 6, 7}

Min split loss (γ) {1e-3,1e-2,0.1, 1,10,1e2,1e3}

Learning rate {0, 0.01, …, 1.0 }

Random 
Forest Number of estimators {10, 100, 1000}

Min weight fraction leaf { 0.0, 0.25, 0.5 }

Kernel Ridge Kernel Radial basis function

Regularization (α) { 1e-3, 1e-2, 0.1, 1 }

Kernel width (γ) { 1e-2, 0.1, 1, 10, 100 }

ElasticNet l1-l2 ratio { 0, 0.01, …, 1.0 }

selection { cyclic, random }

A note on archiving When FEAT is used without a complexity-aware survival method (i.e., 

with Lex, SimAnn, Random), a separate population is maintained that acts as an archive. 
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The archive maintains a Pareto front according to minimum loss and complexity (Eqn 3). At 

the end of optimization, the archive is tested on a small hold-out validation set. The 

individual with the lowest validation loss is the final selected model. Maintaining this 

archive helps protect against overfitting resulting from overly complex / high capacity 

representations, and also can be interpreted directly to help understand the process being 

modelled.

Fig. 13. 
Mean 10-fold CV R2 performance for various SO methods in comparison to other ML 

methods, across the benchmark problems.

Fig. 14. 
Size comparisons of the final models in terms of number of parameters.
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Fig. 15. 
Wall-clock runtime for each method in seconds.

Fig. 16. 
Mean correlation between engineered features for different SO methods compared to the 

correlations in the original data (ElasticNet).

We benchmarked these approaches in a separate experiment on 88 datasets from PMLB 

[60]. The results are shown in Figures 13–16. Considering Figures 13 and 14, we see that 

LexNSGA2 achieves the best average R2 value while producing small solutions in 

comparison to Lex. NSGA2, SimAnneal, and Random search all produce less accurate 

models. The runtime comparisons of the methods in Figure 15 show that they are mostly 

within an order of magnitude, with NSGA2 being the fastest (due to its maintenance of 

small representations) and Random search being the slowest, suggesting that it maintains 

large representations during search. The computational behavior of Random search suggests 

the variation operators tend to increase the average size of solutions over many iterations.
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9.3 Illustrative Example

We show an illustrative example of the final archive and model selection process from 

applying FEAT to a galaxy visualization dataset [8] in Figure 17. The red and blue points 

correspond to training and validation scores for each archived representation with a square 

denoting the final model selection. Five of the representations are printed in plain text, with 

each feature separated by brackets. The vertical lines in the left figure denote the test scores 

for FEAT, RF and ElasticNet. It is interesting to note that ElasticNet performance roughly 

matches the performance of a linear representation, and the RF test performance corresponds 

to the representation [tanh(x0)][tanh(x1)] that is suggestive of axis-aligned splits for x0 and 

x1. The selected model is shown on the right, with the features sorted according to the 

magnitudes of β in the linear model. The final representation combines tanh, polynomial, 

linear and interacting features. This representation is a clear extension of simpler ones in the 

archive, and the archive thereby serves to characterize the improvement in predictive 

accuracy brought about by increasing complexity. Although a mechanistic interpretation 

requires domain expertise, the final representation is certainly concise and amenable to 

interpretation.

Fig. 17. 
(Left) Representation archive for the visualizing galaxies dataset. (Right) Selected model 

and its weights. Internal weights omitted.

9.4 Statistical Comparisons

We perform pairwise comparisons of methods according to the procedure recommended by 

[14] for comparing multiple estimators. In Table 8, the CV R2 rankings are compared. In 

Table 9, the best model size rankings are compared. Note that KernelRidge is omitted from 

the size comparisons since we don’t have a comparable way of measuring the model size.
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Fig. 1. 
Example model representation in FEAT, illustrating the connection to neural networks. The 

input variables (x) are represented as leaves, and each other node is an operator from Table 

1. Weights are attached to each edge connecting a differentiable operator to its arguments 

within the gray box, shown with dotted lines. Those weights, θ, are learned via gradient 

descent using backpropagation. The final layer is fed into a linear model, y(ϕ(x)), 
parameterized by β. This example model is composed of four sub-programs, or features, 

varying in depth and composition.
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Fig. 2. 
A) The steps of the FEAT algorithm. Execution begins with initialization and evaluation, 

selection, variation, evaluation of offspring, and finally survival. B) The evaluation process 

is shown. Individuals are evaluated and used to fit a linear model, and then gradient descent 

is performed for a set number of iterations to learn the internal weights θ. The final model 

and its loss, L(y, y), are returned.
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Fig. 3. 
Properties of the PMLB benchmark datasets [60]. The blue points are datasets that were 

used to benchmark variants of FEAT in Section 4.
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Fig. 4. 
Mean 5-fold CV R2 performance for different crossover operators on the eight tuning 

problems.
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Fig. 5. 
Average pairwise representation correlation (Eqn. 4) for different crossover operators on the 

eight tuning problems.

La Cava and Moore Page 30

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Test rankings for different crossover probabilities on the eight tuning problems.

La Cava and Moore Page 31

Genet Program Evolvable Mach. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Mean 5-fold CV R2 performance for different levels of feedback on the eight tuning 

problems.
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Fig. 8. 
Mean 10-fold CV R2 performance for various SO methods in comparison to other ML 

methods, across the benchmark problems.
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Fig. 9. 
Size comparisons of the final models in terms of number of nodes in the solutions.
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Fig. 10. 
Mean pairwise correlations of the representations produced by final models of different 

methods, in comparison to the correlations in the original attribute space (x).
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Fig. 11. 
Median test MSE rankings on the PMLB datasets. The box shows the quartiles of the 

rankings with whiskers showing the rest of the distribution excluding outliers. Algorithms 

are ordered top to bottom by best (lowest) to worst (highest) median ranking.
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Fig. 12. 
Wall clock time comparisons on the PMLB datasets. Runtime is the wall clock time for a 

single training instance. Algorithms are ordered top to bottom by fastest to slowest.
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Table 1

Functions and terminals used to develop representations.

Continuous functions { +, −, *, /, ()2, ()3, (), sin, cos, exp, log, exponent, logit, tanh, gauss, relu}

Boolean functions { and, or, not, xor, =, <, ≤, >, ≥ }

Terminals {x}
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Table 2

Hyperparameter values for FEAT in the experiments. “Maximum dimensionality” refers to the largest allowed 

number of features (m).

Hyperparameter Values

probability of crossover (complement: mutation) [0,0.25,0.5, 0.75,1.0]

feedback (γ, Eqn. 2) [0, 0.25, 0.5, 0.75, 1.0]

type of feature crossover [Standard, ResXO, StageXO]

probability of feature crossover (complement: subtree [0.5, 0.75, 1.0]

crossover)

feedback softmax normalization [On, Off]

population size 500

generations 100 (200 for PMLB)

max stalled generations 10

max depth 6

maximum dimensionality min(50, 2 * |x|)

iterations of gradient descent 10
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Table 3

Regression problems used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503

Concrete 8 1030

ENC 8 768

ENH 8 768

Housing 14 506

Tower 25 3135

UBall5D 5 6024

Yacht 6 309
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Table 4

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of R2 scores for the methods across all tuning 

problems. Bold: p <0.05.

Feat FeatResXO

FeatResXO 4.6e-01

FeatStageXO 3.5e-02 1.2e-01
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Table 5

Best hyperparameter values for FEAT across the eight tuning problems.

Hyperparameter FEAT FEAT-ResXO FEAT-StageXO

probability of crossover 0.75 0.75 0.75

feedback 0.25 0.0 0.25

probability of feature crossover 0.75 0.5 0.5

feedback softmax normalization Off Off Off
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Table 7

Algorithms from Orzechowski et. al. [61] with their parameter settings. The parameters in quotations refer to 

their names in the scikit-learn implementations.

Algorithm name Parameter Values

eplex, afp, mrgp pop size / generations {100/1000,1000/100}

max program length / max depth {64 / 6}

crossover rate {0.2,0.5,0.8}

mutation rate 1-crossover rate

gsgp pop size / generations {100/1000,200/500,1000/100}

initial depth {6}

crossover rate {0.0,0.1,0.2}

mutation rate 1-crossover rate

eplex_lM pop size / generations {500/2000,1000/1000,2000/500}

max program length {100}

crossover rate {0.2,0.5,0.8}

mutation rate 1-crossover rate

AdaBoostRegressor ‘n_estimators’ {10, 100, 1000}

‘learning_rate’ {0.01, 0.1, 1, 10}

GradientBoostingRegressor ‘n_estimators’ {10, 100, 1000}

‘min_weight_fraction_leaf {0.0, 0.25, 0.5}

‘max-features’ {‘sqrt’,’k>g2’, None}

KernelRidge ‘kernel’ {‘linear’, ‘poly’, ‘rbf, ‘sigmoid’}

‘alpha’ {1e-4, 1e-2, 0.1, 1}

‘gamma’ {0.01, 0.1, 1, 10 }

LassoLARS ‘alpha’ { 1e-04, 0.001, 0.01, 0.1, 1 }

LinearRegression default default

MLPRegressor ‘activation’ {‘logistic’, ‘tanh’, ‘relu’}

‘solver’ {‘lbfgs’,’adam’,’sgd’}

‘learning_rate’ {‘constant’, ‘invscaling’, ‘adaptive’}

RandomForestRegressor ‘n_estimators’ {10, 100, 1000}

‘min_weight_fr action_leaf {0.0, 0.25, 0.5}

‘max-features’ {‘sqrt’,’log2’, None}

SGDRegressor ‘alpha’ {1e-06, 1e-04, 0.01, 1 }

‘penalty’ {‘12’, ‘11’, ‘elasticnet’}

LinearSVR ‘C’ {1e-06, 1e-04, 0.1, 1 }

‘loss’ {‘epsilon_insensitive’, ‘squared_epsilon_insensitive’}

XGBoost ‘n_estimators’ {10, 50, 100, 250, 500, 1000}

‘learning_rate’ {1e-4, 0.01, 0.05, 0.1, 0.2}

‘gamma’ {0, 0.1, 0.2, 0.3, 0.4}

‘max_depth’ {6}

‘subsample’ {0.5, 0.75, 1}
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Table 8

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of R2 scores for the FEAT variants across all 

benchmarks. Bold: p <0.05.

ElasticNet Feat FeatCN FeatCorr FeatResXO FeatStageXO KernelRidge MLP RF

Feat 4.2e−14

FeatCN 1.6e−12 1.2e−02

FeatCorr 2.7e−12 1.1e−02 1.0e+00

FeatResXO 1.4e−14 1.0e+00 3.1e−02 7.2e−02

FeatStageXO 5.2e−13 1.0e+00 2.0e−01 9.4e−01 1.0e+00

KernelRidge 2.1e−12 7.3e−05 3.0e−02 6.6e−03 1.5e−05 1.3e−03

MLP 1.9e−11 7.7e−03 1.0e+00 1.0e+00 1.4e−03 9.1e−03 1.0e+00

RF 2.4e−09 2.5e−09 1.5e−05 7.3e−07 1.3e−08 1.8e−06 1.0e+00 9.9e−02

XGB 2.8e−14 1.0e+00 1.0e+00 1.0e+00 1.0e+00 1.0e+00 2.0e−04 2.3e−02 6.5e−13
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Table 9

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of sizes for the FEAT variants across all 

benchmarks. Bold: p <0.05.

ElasticNet Feat FeatCN FeatCorr FeatResXO FeatStageXO MLP RF

Feat 1.4−13

FeatCN 4.1−16 9.5−08

FeatCorr 2.0−12 1.0e+00 1.2−07

FeatResXO 1.1−12 7.5−01 4.9−03 1.0e+00

FeatStageXO 3.9−16 9.3−09 1.0e+00 3.6−07 1.0−04

MLP 2.1−17 8.9−17 7.0−17 1.0−16 1.1−16 9.4−17

RF 4.7−20 7.6−17 7.3−17 1.0−16 1.1−16 4.3−17 6.4−17

XGB 2.3−17 8.4−17 9.7−17 1.1−16 1.1−16 8.5−17 1.0e+00 1.1−17
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Table 10

Bonferroni-adjusted p-values using a Wilcoxon signed rank test of MSE scores for the methods across all 

benchmarks. Bold: p <0.05.

Adaboost AFP EPLEX EPLEX-1M FEAT FEAT-
ResXO

FEAT-
StageXC

GradBoost GSGP KernelRidge Lasso LinReg LinSVR MLP MRGP RF SGD

AFP 1.2e−02

EPLEX 1.0e+00 7.3e
−08

EPLEX-1M 8.2e−09 9.4e
−12

3.4e−09

FEAT 2.6e−08 3.8e
−10

1.9e−06 1.0e+00

FEATResXO 1.8e−04 2.2e
−06

5.8e−04 5.0e−02 1.7e
−02

FEATStageXO 9.1e−08 8.2e
−10

4.1e−06 1.0e+00 1.0e
+00

5.8e
−03

GradBoost 1.5e−08 2.3e
−08

5.6e−03 3.7e−02 1.0e
+00

1.0e
+00

1.0e+00

GSGP 8.4e−11 2.6e
−07

4.1e−12 1.5e−14 8.1e
−14

5.1e
−13

2.3e−14 2.6e−14

KernelRidge 1.0e+00 1.5e
−03

1.0e+00 8.1e−04 2.1e
−02

1.0e
+00

1.1e−02 9.9e−01 1.4e
−14

Lasso 8.3e−04 1.0e
+00

1.9e−06 4.4e−12 4.5e
−10

3.5e
−07

4.8e−10 1.8e−08 2.1e
−02

8.6e−08

LinReg 1.1e−04 7.0e
−03

2.3e−07 3.7e−12 4.5e
−11

4.5e
−09

6.1e−11 1.7e−08 1.0e
+00

3.0e−09 1.0e
+00

LinSVR 1.1e−03 8.6e
−02

2.3e−06 4.6e−12 1.3e
−09

5.7e
−07

9.0e−10 2.6e−08 3.9e
−01

7.9e−09 1.0e
+00

1.0e
+00

MLP 2.6e−02 2.6e
−06

1.0e+00 1.0e+00 1.0e
+00

1.0e
+00

1.0e+00 1.0e+00 9.6e
−15

7.4e−01 6.8e
−07

2.0e
−08

1.3e−07

MRGP 1.0e+00 1.0e
+00

1.0e+00 1.1e−04 7.0e
−04

2.8e
−01

3.6e−04 2.1e−01 2.1e
−05

1.0e+00 2.3e
−01

2.5e
−02

1.5e−01 1.0e
+00

RF 7.9e−05 1.2e
−04

1.0e+00 7.4e−06 1.0e
−04

2.0e
−01

7.6e−05 2.3e−06 2.1e
−13

1.0e+00 4.7e
−06

4.4e
−06

1.3e−06 1.0e
+00

1.0e
+00

SGD 2.0e−06 6.4e
−05

1.9e−09 9.6e−13 2.7e
−12

1.5e
−09

1.3e−11 4.1e−11 1.0e
+00

2.6e−09 5.5e
−02

1.0e
+00

1.0e+00 1.8e
−00

4.5e
−03

2.8e
−09

XG Boost 2.1e−08 6.9e
−11

5.3e−05 1.0e+00 1.0e
+00

1.0e
+00

1.0e+00 8.9e−03 6.0e
−15

6.9e−03 1.3e
−10

6.4e
−10

2.2e−10 1.0e
+00

2.8e
−03

3.6e
−08

5.8e
−12
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