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A B S T R A C T

We describe a new multiclass classification method that learns multidimensional feature transformations using
genetic programming. This method optimizes models by first performing a transformation of the feature space
into a new space of potentially different dimensionality, and then performing classification using a distance
function in the transformed space. We analyze a novel program representation for using genetic programming
to represent multidimensional features and compare it to other approaches. Similarly, we analyze the use of
a distance metric for classification in comparison to simpler techniques more commonly used when applying
genetic programming to multiclass classification. Finally, we compare this method to several state-of-the-art
classification techniques across a broad set of problems and show that this technique achieves competitive test
accuracies while also producing concise models. We also quantify the scalability of the method on problems of
varying dimensionality, sample size, and difficulty. The results suggest the proposed method scales well to large
feature spaces.

1. Introduction

Feature selection and feature construction play fundamental roles in
the application of machine learning (ML) to classification. Feature selec-
tion makes it possible, for example, to reduce high-dimensional datasets
to a manageable size, and to refine experimental designs through mea-
surement selection in some domains. The ML community has become
increasingly aware of the need for automated and flexible feature engi-
neering methods to complement the large set of classification method-
ologies that are now widely available in open-source packages such as
Weka and Scikit-Learn [10,30]. Typical classification pipelines treat fea-
ture selection and feature construction as pre-processing steps, in which
the attributes in the dataset are selected according to some heuristic [9]
and then projected into more complex feature spaces using e.g. kernel
functions [29]. In both cases the feature pre-processing is often con-
ducted in a trial-and-error way rather than being automated or intrin-
sic to the learning method. The use of non-linear feature expansions
can also lead to classifiers that are black-box, making it difficult for
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researchers to gain insight into the modelled process by studying the
model itself. In this paper we investigate a multiclass classification
strategy designed to integrate feature selection, construction and model
intelligibility goals into a distance-based classifier to improve its ability
to build accurate and simple classifiers.

A well known learning method that implicitly conducts feature
selection and construction is genetic programming (GP) [17], which
has been proposed for classification [7,15]. GP incorporates feature
selection and construction by optimizing a population of programs con-
structed from a set of instructions that operate on the dataset features
to produce a model. Compared to traditional ML approaches such as
logistic regression and decision tree classification, GP makes fewer a
priori assumptions about the data [22] and allows for various program
representations [26]. In addition, GP has well-established methods for
optimizing the intelligibility of models [37]. There have been some
promising real-world applications of GP to binary classification [43],
but recent work has focused on extending GP to the multi-class classi-
fication problem [14,28], in which there are more than two outcomes
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to estimate. This previous work suggests that traditional GP fares worse
in comparison to other classification methods in the multiclass setting.
However, two recent GP-based methods, M2GP [14] and M3GP [28]
were shown to perform on par with several other ML strategies in recent
studies.

The performance improvements observed by M2GP and M3GP
stemmed the incorporation of a distance-based classification strategy
into a multi-output GP system. We recently proposed a new method
[20] called M4GP, that, although inspired by M2GP and M3GP, sig-
nificantly improves these two methods. In this paper we extend M4GP
by introducing an archiving strategy and by comparing it to recently
published methods on data challenges from two different domains. The
contributions of this work are:

• M4GP uses a novel (stack-based) program representation, that sim-
plifies the construction of multidimensional solutions compared to
M2GP and M3GP (which, instead, used a tree-based representation).
This makes the evolutionary process of M4GP more efficient and the
final solutions more expressive, readable and easy to understand.

• M4GP incorporates a multiobjective parent selection and survival
technique that allows it to clearly and consistently outperform
M2GP and M3GP on a wide set of test problems. To the best of
our knowledge, this technique had never been used for multi-class
classification before.

• We introduce an archiving strategy that maintains a set of opti-
mal trade-off solutions based on complexity and accuracy. The final
model is selected from this archive using an internal validation set
to reduce ovefitting.

Thanks to these improvements, M4GP is able to improve the best known
GP methods for multi-class classification, and finds results that are com-
petitive with the state-of-the-art methods for the studied problems (a set
of 26 classification problems, ranging in numbers of classes, attributes
and samples). Furthermore, on a set of biomedical data sets with up to
5000 attributes, M4GP is shown to perform on par with state-of-the-art
methods while producing smaller models in less time. All these fea-
tures foster M4GP as the new state-of-the-art multi-class classification
method with GP.

The paper is organized as follows: Section 2 presents M4GP. In
Section 3 we discuss previous and related work, focusing on the sim-
ilarities and differences between M2GP, M3GP and M4GP. Section 4
describes our experimental study, presenting the used test problems
and the experimental settings. In Section 5, we discuss the obtained
experimental results. Finally, Section 6 concludes the paper.

2. M4GP

In multiclass classification (classification into more than two
classes), we wish to find a mapping ŷ(𝐱) ∶ ℝp →  that associates the
vector of attributes 𝐱 ∈ ℝp with K > 2 class labels from the set  =
{1 … K} using n paired examples from the training set  = {(𝐱i, yi), i =
1 … n}.

One way to conduct classification is to measure the similarity of
each attribute to the bulk properties of the attributes within each class,
and then assign the label corresponding to the most similar group. This
strategy is embodied by the ‘nearest centroid’ classifier [8], which oper-
ates as follows. The attributes are partitioned into subsets {X1 … XK},
such that Xk is the subset of x with class label k. To classify a new sam-
ple 𝐱′ ∈ ℝp, the distance of x′ to each subset {X1 … XK} is measured
and the class label corresponding to the minimum distance is assigned
as

ŷ(𝐱′) = j, where j = arg min
k

D(𝐱′,𝐗k) , k = 1,… ,K (1)

In its simplest form, D can be the Euclidean distance between x′ and
the centroid of Xk. However, previous work has indicated the appropri-
ateness of the Mahalanobis distance (as used in linear discriminant anal-
ysis), clearly showing and justifying its advantages compared to other

types of metrics, like the Euclidean distance [14]. The Mahalanobis dis-
tance is defined as follows:

DM(𝐱′,𝐗k) =
√
(𝐱′ − 𝜇k)𝚺−1

k (𝐱′ − 𝜇k)T (2)

where 𝜇k ∈ ℝp is the centroid of Xk and 𝚺k ∈ ℝp×p the within-class
covariance matrix. Eqn. (2) renders DM the equivalent Euclidean dis-
tance of x′ from Xk after scaling by the eigenvalues (variances) and
rotating by the eigenvectors of 𝚺k to account for the correlation
between columns of Xk.

The nearest centroid classifier assumes the within-class samples to
be normally distributed about their centroid and separated from the dis-
tributions of other classes. For this reason, the data in the right plot of
Fig. 1 is easily classifiable using nearest centroids. Unfortunately, many
real-world problems have data that violates these assumptions, as in the
left plot of Fig. 1. Furthermore, for high dimensional data, calculating
Eq. (2) can be impractical. However, by finding a set of transformations
that project the data into a space that delineates class membership, the
performance of a nearest centroid classifier can be improved and high-
dimensional distance comparisons may be avoided. Furthermore, the
relationship between the raw data and the transformed space can be
made legible by using symbolic transformations, as in 𝜙1 and 𝜙2 in
Fig. 1.

The goal of M4GP is to find a set of transformations Φ(𝐱) ∶ ℝp → ℝd

that projects x into a space in which the samples are more accurately
classified by the nearest centroid method. Classification is then con-
ducted with centroids 𝜇Φk

∈ ℝd, covariance matrix 𝚺Φk
∈ ℝd×d, and

distances DM(Φ(x), Φ(Xk)). We use GP to find or approximate the opti-
mal synthesized features Φ∗ = [𝜙1 … 𝜙d] that maximize the number
of correctly classified training samples, as:

Φ∗(𝐱) = arg max
Φ∈𝕊

f (Φ,  ) (3)

f (Φ,  ) = 1
n

n∑
i=1

𝕀
(
ŷ(Φ(𝐱i)) = yi

)
(4)

where 𝕊 is the space of possible transformations Φ, f is the classification
accuracy, and the indicator function 𝕀 = 1 if ŷ(Φ(xi)) = yi, and 0 oth-
erwise. GP simultaneously optimizes the form of Φ(x), the subset of x
used in Φ(x), and the transformation dimensionality (|Φ| = d). There-
fore, M4GP can produce low-order models for high dimensional data
sets, making Eq. (2) tractable, or produce high-order transformations to
improve classification accuracy for highly non-linear problems.

Fig. 1. Illustrative example of how data transformations can improve classifi-
cation. On the left, the raw data for a synthetic 4-class problem for which there
is significant overlap of data from different classes in the original space. On the
right, the data is transformed into a new space in which the samples fall into
neat clusters and class membership is easily discernible.
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Fig. 2. Example of program representation of a multidimensional transforma-
tion. Arguments such as x1 are pushed to the stack, and operators such as ‘∗’
pull arguments from the stack and push the result.

2.1. Genetic programming

GP represents solutions as programs composed of basic building
blocks and iteratively updates these programs based on their quality.
In M4GP, each program consists of a set of equations that comprise the
synthesized features Φ(x) used to estimate ŷ. For example, a program i
might construct a polynomial expansion of two attributes as

𝐢 → Φ(𝐱) = [x1, x2, x2
1, x2

2, x1x2] (5)

where 𝜙1 = x1, 𝜙2 = x2, 𝜙5 = x1x2, and |Φ| = 5. Traditionally, a GP
program consists of a single syntax tree with a single output generated
at the root node [17]. For example, 𝜙5 above could be represented by
a tree (∗ (x1) (x2)), where ‘∗’ is the root node and (x1) and (x2) are
its leaves. In order to allow programs to represent multi-dimensional
transformations, in M2GP and M3GP, program trees were modified with
special nodes in order to allow for multiple outputs at the root [14,28].
This introduced unnecessary complexity to the representation. A con-
tribution of this work is the introduction of a stack-based data flow to
simplify the encoding of Φ, presented in §2.1.1.

The GP population is optimized by probabilistically selecting pro-
grams based on their performance and recombining and mutating these
programs to make steps in the search space. The selection mechanisms
used in M4GP are described in §2.1.2.

2.1.1. Representation
M4GP uses a stack-based representation [31] rather than the more

traditional tree-based GP representations. Programs consist of post-fix
notation equations, e.g., 𝐢 = [x1 x2 +] → Φ = [x1 + x2]. This repre-
sentation eliminates the need for specialized nodes used in M2GP and
M3GP by supporting multiple outputs by default. Programs are eval-
uated by stack operations; for example the program in Eq. (5) can be
constructed as

𝐢 = [x1 x2 x1 x1 ∗ x2 x2 ∗ x1 x2 ∗]

The execution of program i is illustrated in Fig. 2. In lieu of recursive
tree evaluation, stack-based evaluation proceeds left to right, pushing
and pulling instructions to and from a single stack. Arguments such as
x1 are pushed to the stack, and operators such as ‘∗’ pull arguments
from the stack and push the result. At the end of a program’s execution,
the stack state is interpreted as the multi-dimensional transformation.

2.1.2. Initialization, selection, and variation
M4GP initializes a population of programs of various sizes and

dimensionality. Each equation in a program is initialized recursively
in an analogous fashion to the grow method (see Ref. [32]) but limited
by number of nodes rather than depth. Eq. (4) is used as program fitness
for selection.

We test three population selection methods in this work: tourna-
ment selection [32], lexicase selection [11,39], and age-fitness Pareto
selection [34]. Tournament selection proceeds by selecting a set of indi-
viduals (in this case, two) in the current population and choosing the
one with better fitness as a parent for the next generation. We describe
the other two methods below in more detail.

Lexicase selection. Lexicase selection is a parent selection technique
that rewards individuals in the population for performing well on
unique combinations of fitness cases, i.e. samples. Each parent selec-
tion begins with the entire population in the selection pool. The fitness
cases are shuffled randomly and the first case is considered. Any pro-
grams in the pool that do not have exactly the best fitness on the first
case are removed from the selection pool. If more than one individual
remains in the pool, the removal process is repeated with the next case.
This process continues with additional fitness cases until either 1) only
one individual remains in the selection pool, in which case that indi-
vidual is selected as a parent or 2) no more fitness cases are left, in
which case a parent is selected from the remaining pool. This process is
repeated for each parent selection.

In lexicase selection, test cases can be thought of as filters, and each
parent selection represents a random path through these filters. The
selected parents are Pareto-optimal with respect to the fitness cases
[21]. Each fitness case has a filtering capacity that is directly propor-
tional to its difficulty since it removes individuals from selection that
perform worse than others on it. Selective pressure thereby shifts to
cases that are difficult to solve. Because each parent selection uses a
new ordering of fitness cases and the cases filter the population in
proportion to their difficulty, parent selection favors individuals that
perform well on unique combinations of test cases. Lexicase selection
therefore promotes individuals with diverse performance observed in
previous experiments [11,21].

Age-fitness Pareto survival. Each individual in Age-fitness Pareto sur-
vival is assigned an age equal to the number of generations since its
oldest ancestor appeared. Each generation, one new individual is added
to the population to provide a small amount of random restart. Selec-
tion for variation is random rather than guided, and during breeding
a number of offspring equal to the overall population size is created.
Afterwards, the set P consisting of the current population and the newly
created individuals is culled to the original population size, N, using
their accuracy and their age. In this case, a lower age is preferred, and
the fitness is inverted so that a lower fitness is also better. Program
survival is based on the environmental selection scheme of the Strength
Pareto Evolutionary Algorithm 2 (SPEA2) [44]. This algorithm uses two
measures to perform this reduction: 1) Pareto strength of an individual,
S(i), which is the number of individuals equal to or dominated by i (i ≺
j),1 divided by P + 1, and 2) a density estimate D(i) < 1, based on the
inverse of the distance to the k-th nearest neighbor [36] of i in objec-
tive space (in this case the objectives are normalized between zero and
one). These metrics are used to define a fitness value F(i) that combines
the total strength of the individuals j ∈ P that dominate i with density
estimate D(i):

F(𝐢) =
∑

j∈P,j≺i
S(𝐣) + D(𝐢) (6)

Every nondominated solution is first copied to the new population. If
the new population size is smaller than N, individuals are added in

1 Individual i1 dominates i2; i.e., (i1 ≺ i2) if f j(i1) ≤ f j(i2)∀j and f j(i1) < f j(i2)
for at least one j. Here a lower f j is better.
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order of lowest (i.e., best) F(i). If the population is larger than N, signi-
fying that there are more than N nondominated solutions, individuals
are removed iteratively based on lowest D(i), such that individuals in
less dense locations in objective space are preferred. For the latter sce-
nario, the use of D(i) for selection helps preserve spread of solutions
along the Pareto front.

Variation. We use the mutation and crossover operators from M3GP
[28] in order to simplify the points of comparison with M4GP. These
search operators are biased to explore the dimensionality of Φ. The
search operators manipulate “sub-trees” of programs, which are equiva-
lent to segments of interacting nodes in the stack-based representation.
The mutation operator, with equal probability, chooses one of three
actions: i) it replaces a sub-tree with a randomly generated sub-tree; ii)
it adds a new randomly generated sub-tree to the end of the program,
thereby increasing |Φ| by one; iii) it deletes a sub-tree corresponding to
a “root”, thereby reducing |Φ| by one. The crossover operator similarly
chooses between one of two equally probable actions: i) it performs
standard sub-tree crossover of the parents, selecting non-“root” nodes;
ii) it performs standard sub-tree crossover of “root” nodes. In this case,
“roots” are those nodes in the program that produce a value in the final
stack, and can be identified from stack-based programs in linear time.

2.1.3. Alternate classification strategies
In M4GP, Eqn. (1) is used to make classifications, in contrast to

more traditional approaches in GP (see Ref. [7] for a review). More
commonly, GP is used to evolve discriminant functions (mathematical
expressions) that are combined with user-defined thresholds to classify
samples. For example, for a binary classification problem, a mathemat-
ical expression is evolved to produce positive values for one class and
negative values for another class - in other words the threshold is set
to zero. When extending to multiclass problems, either the problem can
be split into several one-versus-rest problems, as done with SVM, or
several thresholds can be specified such that instances of are assigned
class 0 for program outputs less than −1, class 1 for outputs between
−1 and 1, and class 2 for outputs greater than 1. Another approach is
to evolve classification rules using boolean operators (e.g. AND, OR,
NOT) and interpret the output as class label. The rule-based approach
also requires the problem to be decomposed into binary classification
problems to apply to multiclass problems.

We implement two simple approaches to classification using the
stack-based, multi-output system described in §2.1 so that we can com-
pare M4GP to more common GP implementations. The first, referred to
as ‘bool’, includes boolean operators {AND, OR, NOT, <, >, ≤, ≥, =,
IF-THEN, IF-THEN-ELSE} to evolve a set of classification rules, and
interprets the output as a bitstring for classification. For a binary classi-
fication problem, the output of the boolean stack is interpreted as class
1 for output [0] and class 2 for output [1]. For a four class problem, the
output of the boolean stack is interpreted as follows: [0, 0]:class 1; [0,
1]: class 2; [1, 0]: class 3; [1 1]: class 4.

The second approach which we call ‘float’ evolves a set of mathe-
matical expressions in equivalent fashion to the GP system in M4GP.
However, classifications are made based on the index of the largest
value in the stack output. For example, if the program in Fig. 2 pro-
duced the output [1.5, 3, 2.25, 9, 4.5], class 4 would be assigned to the
evaluated sample.

In our experiments, we compare the centroid-based classification
strategy used in M4GP to the ‘bool’ and ‘float’ strategies described
above.

2.1.4. Archiving solutions
Typically in GP the individual with the highest training accuracy

(the so-called ‘best-of-run’ individual) is chosen as the final model and
evaluated on the test set. In order to compare to these previous meth-

ods, we do the same with M4GP on the benchmark problems. However,
given the importance of interpretability, on subsequent problems we
maintain an archive of solutions that represent the best trade-offs of
training accuracy and complexity (i.e. the Pareto set [44]). To choose
a final model, a small validation set is split from the training set before
the run. At the end of the run, the archive is evaluated on the validation
set, and the individual with the best score is chosen as the final model.
This approach should guard against over-fitting and produce simpler
models. The entire archive can also be studied by experts to get a better
sense of the building blocks of good solutions to their problem, which
can offer insight to the user.

3. Related work

GP has been used extensively for evolving classification functions
ŷ(x) directly [7,15,26]. In application to multiple classes, the discrimi-
nant functions evolved by GP must be thresholded, or the problem must
be split into several binary classification problems [7]. To overcome
the need for arbitrary thresholds in multiclass problems, M2GP pro-
posed a multi-output GP that evolved Φ(x) and used the nearest cen-
troid approach (Eq. (1)) [14]. M2GP demonstrated in particular that
Mahalanobis distance outperformed Euclidean distance in this frame-
work. M3GP extended M2GP to allow programs to change dimension-
ality during the run via specialized search operators that increased or
decreased the dimensionality of a tree by modifying its root node [28].
An ensemble version of M3GP named eM3GP was also proposed that
performed similarly to M3GP with smaller, more legible resultant pro-
grams [35]. In contrast to these methods, M4GP removes the need for
explicit root nodes by using a stack-based data flow that also preserves
multi-dimensionality and allows dimensionality to change flexibly. It
also incorporates multi-objective selection strategies and an archive to
promote concise solutions.

Our preliminary work with M4GP [20] explored the role of the cen-
troid classifier and tested M4GP’s multi-dimensional GP strategy on a
set of biomedical problems. A subset of the results suggested M4GP may
be well-suited finding nonlinear interactions between genes in genome
wide association studies, which motivated our detailed investigation
in this paper. Here we expand upon our initial work in the following
ways: 1) we rigorously compare M4GP to previous GP and ML methods
on a set of benchmark problems; 2) we introduce an archiving strategy
for model selection and interpretability; and 3) we conduct a detailed
application study of M4GP to non-linear genetics problems with com-
parisons to recent literature.

In a broader sense, these GP-based methods highlight the unique
challenge of feature construction and its role in learning systems [24].
A few recently developed ML methods have similarly merged GP with
linear regression [1,13,27]. M4GP and its ancestors are more tailored
to the multi-class case, which for these regression-based approaches
requires thresholding of real-valued outputs. The stack-based approach
used by M4GP is also novel compared to the GP representation used in
these works. Another active area of research is the merger of GP with
decision tree learners [18], with promising initial results.

Feature construction is considered an important aspect of image
classification, and GP has been used in several methods in this domain.
For example, GP can be used to learn image embeddings for ensemble
methods [25], as an interactive learning tool for remote sensing [6], and
for detection pulmonary nodes in medical imaging [5]. Liu et al. [25]
also noted the GP’s potential as a dimensionality reduction technique
for large-scale problems. M4GP differs from these approaches in two
ways: first, it focuses on the capacity for low- and high-dimensionality
feature extraction to flexibly suit the needs of the problem, and sec-
ond, it applies to general multiclass classification problems. We show
in application to a high-dimensional genetics dataset in Section 5.3 that
M4GP can be useful for learning low-order representations.
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Table 1
Data set properties used for benchmark comparisons and Opportunity Activity Recognition Challenge.

Benchmark Comparisons Activity Recognition

Heart IM-3 IM-10 Movl Seg Vowel Wav Yeast Opp-S2 Opp-S3

Classes 2 3 10 15 7 11 3 10 4 4
Attributes 13 6 6 90 19 13 40 8 242 242
Samples 270 322 6798 360 2310 990 5000 7797 16667 15550

Table 2
M4GP settings. Changes to the settings for Opp-S2 and Opp-S3 are noted in
parentheses.

Setting Value

Population size 500 (1000)
Max Generations 100
Crossover/Mutation 50/50%
Ephemeral random constants [17] range [0,1]
Program size limits by # nodes [3, 100 (500)]
Initial dimensionality range (d) [1,33]
Termination criterion generations or perfect training accuracy
Trials 30 (10)

4. Experimental analysis

The experimental analysis of M4GP is divided into three sections.
First we conduct benchmark comparisons, comparing M4GP to alter-
native GP strategies and to results from related GP literature. In the
subsequent two section, we benchmark M4GP against published results
from two different studies, one concerned with human activity recog-
nition [3,33], and the other with disease prediction from genome-wide
association studies [38]. Performance is quantified in a number of ways:
1) by classification accuracy on the test sets, 2) by run-time, and 3) by
model interpretability according dimensionality of the resultant classi-
fiers as well their forms. The settings for M4GP are shown in Table 2,
and whenever possible, match those used for M2GP, M3GP, and eM3GP.
Programs are constrained to be between 3 and 100 nodes, and are ini-
tialized with a corresponding dimensionality between 1 and 33, con-
strained such that the minimum sub-program is at least 1 node.

4.1. Benchmark comparisons

The 8 problems used for benchmark comparisons are shown in
Table 1. Six of these problems are from the UCI data repository [23],
and the two others, IM-3 and IM-10, are satellite data sets from a United
States Geological Survey [42].

Our first experiment is to test whether incorporating centroid-based
classification into GP improves its performance. To this end, we com-
pare the ‘centroid’, ‘float’, and ‘bool’ configurations defined in §2.1.3
on the benchmark problems. Next, three versions of M4GP are tested:
M4GP with lexicase selection (M4GP-lx), age-fitness Pareto survival
(M4GP-ps), and tournament selection (M4GP-tn). On the first 8 prob-
lems, we benchmark M4GP against M2GP, M3GP, eM3GP, and several
out-of-the-box classifiers from Weka [10]: random forests (RF), ran-
dom subspace (RS), multi-layer perceptrons (MLP), and support vector
machines (SVM). Each method is run for 30 trials, and for each trial the
data is randomly partitioned into 70% training and 30% testing.

4.2. Opportunity Activity Recognition Challenge

We compared M4GP’s performance to the results of the Activity
Recognition Challenge at the 2011 IEEE International Conference on
Systems, Man, and Cybernetics [3,33]. We used the Opportunity Activ-
ity Recognition data set (Opp-S2 and Opp-S3 in Table 1), which consists
of 242 attributes and approximately 32,000 total samples. We bench-

mark M4GP’s ability to predict four classes of locomotion (stand, sit,
walk, lie) from two test subjects (S2 and S3) against the entrants to
the original challenge. In order to perform the comparison to published
results, the weighted F-measure, F1, is used as the fitness metric in
place of Eq. (4). F1 measures classification performance as a function of
precision ( TP

TP+FP ) and recall ( TP
TP+FN ) as:

F1 =
k∑
𝓁

2w𝓁
precision𝓁 · recall𝓁
precision𝓁 + recall𝓁

(7)

TP is the number of true positives, FP is the number of false positives,
and FN is the number of false negatives for class c𝓁 that has k𝓁 sam-
ples out of a total of n, yielding the proportion weight w𝓁 = k𝓁/n. The
raw time series data was downsampled as in Ref. [3] using a moving
average with a window of 500 ms with 250 ms steps. Missing data is
linearly interpolated, and all data was normalized to zero mean and
unit variance.

4.3. Biomedical application

Our preliminary work suggested that M4GP may be able to outper-
form traditional classification strategies in identifying nonlinear inter-
actions in simulated genome-wide association studies (GWAS) [20].
Here, we compare M4GP to the state-of-the-art tools used for identify-
ing epistatic interactions from noisy data sets. Recently, an adaptation
of the tree-based pipeline optimization tool called TPOT-MDR [38] was
shown to perform well on these types of problems in comparison to
other methods. TPOT uses GP to optimize machine learning pipelines,
searching over the space of Scikit-learn machine learning tools [30].
In Ref. [38], Sohn et al. coupled TPOT with multi-factor dimensional-
ity reduction (MDR) and expert knowledge filter algorithms (EKF) to
achieve good results. TPOT-MDR+EKF outperformed XGBoost [4], a
state-of-the-art gradient-boosting tree algorithm, on these GWAS prob-
lems. Here, we compare M4GP to the results from that study to see
if a lighter-weight algorithm (M4GP) with a similar ability to capture
non-linearity in the original feature space, can perform as well as TPOT-
MDR+EKF.

In addition to previously published methods, we compare to a deep
neural network (DNN) approach implemented in PyTorch.2 We con-
struct a feed-forward neural network with 5 hidden layers of 10 nodes

2 http://pytorch.org/.
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Fig. 3. Accuracy of different GP classification methodologies on the test sets of the 8 benchmark problems. ‘bool’, ‘float’ and ‘centroid’ refer to different ways to
interpreting the stack outputs of the GP programs, as described in §2.1.3. The ‘centroid’ method is the one used in M4GP.

Table 3
Comparison of best-of-run median test accuracy for the benchmark problems. The best result is highlighted in bold. Significant
(p < 0.01 according to a pairwise Wilcoxon rank-sum test with Holm correction) improvements with respect to each method is
denoted by a − j according to the method labels.

Method Heart IM-3 IM-10 Movl Seg Vowel Wav Yeast
aRF d80.2 94.8 bcde

fghij 96.9 bcde
fghij 89.4 bcde

fgij 97.3 bcde
g 89.4 81.5 de57.5

bRS d81.5 92.8 cde
fghij93.9 d

f 65.7 d
gj96.0 g82.8 82.2 d56.6

cMLP d80.2 95.9 90.2 bd
fghj82.5 de

gj 96.3 g82.5 ab
g 83.3 de58.0

dSVM 55.6 93.8 90.4 14.4 55.8 81.8 abce
fgh 86.3 41.1

eM2GP d80.2 93.8 90.2 bcd
fghij85.9 d

g 95.6 cd
g 85.9 abc

g 84.9 d53.8

f M3GP d79.0 95.4 c
ij91.0 d57.1 d95.6 abcde

g 93.8 ab
g 84.3 d56.2

geM3GP d80.9 93.3 j90.3 bd
fh 78.6 d94.7 78.6 81.2 d56.2

hM4GP-lx abcde
fg 85.2 abcde

fg 97.9 ij90.7 bd
f 73.1 bde

fgj 96.6 abcde
fg 95.6 abc

fg 85.3 de
g 58.9

iM4GP-ps abcde
fghj 90.1 abcde

fg 97.9 89.8 bd
fh 80.1 de

gj 96.1 abcde
fghj 97.5 abce

fghj 87.1 de
fg 58.9

jM4GP-tn abcde
fg 87.7 abcde

fg 97.9 89.6 bd
fh 76.9 d95.1 abcde

fg 96.0 abce
fg 86.0 d56.8

each. The DNN is trained via back propagation using stochastic gradient
descent with a learning rate of 0.1 and a maximum of 1000 epochs. The
non-linear activation functions in the hidden layers are defined as recti-
fied linear units, and at the output, a softmax function is used. Dropout
is used at the input layer for regularization [12].

We follow the experimental design in Sohn et al. by running 30
replication trials of 10-fold cross validation with balanced accuracy as
the metric of performance. The simulated GWAS datasets used in the
comparison are generated using GAMETES, which is a tool for embed-
ding epistatic gene-gene interactions into noisy genetic datasets [41].

16 total problems are compared that vary according to two measures
of difficulty: number of attributes (10, 100, 1000, 5000) and signal-
to-noise ratio (0.05, 0.1, 0.2, 0.4), also known as heritability in the
genetics community. For each problem, a two-way epistatic interaction
is present that is predictive of the disease classification, and its presence
is masked by the presence of confounding attributes and noisy disease
classifications. We use multi-factor dimensionality reduction (MDR) in
our analysis, which is a method developed specifically for detecting
these interactions via exhaustive search of pairwise comparisons of
attributes. Here, the comparison MDR-Pred is given the predictive fea-

6
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Fig. 4. Test set accuracy on the first eight benchmark problems for ten different classification methods.

Fig. 5. Mean convergence characteristics of M4GP on the training set (dotted lines) and test set (solid lines) over 100 generations. Shapes indicate different selection
methods. Error bars denote the confidence intervals.
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Fig. 6. Median training rankings of classifiers on the eight benchmark problems.
Bars denote the 95% confidence interval.

tures beforehand, which is only possible in a simulated study such as
this one. MDR-Pred provides a yardstick to indicate near-optimal per-
formance on each dataset.

The EKF algorithms introduced in TPOT-MDR+EKF are based on
the Relief family of feature selection algorithms [16]. They are pre-
preprocessing filters that are sensitive to interactions and are used in
TPOT-MDR+EKF to reduce the attributes to a manageable size. We
include a version of M4GP in our comparisons called M4GP+EKF that
uses ReliefF [16] to perform feature selection before M4GP is run,
reducing the dataset to the top 10 features found by the algorithm.
This gives us a way to tease out the effect of feature selection versus the
performance of the search algorithms themselves.

5. Results

The best classifiers generated by M4GP for each trial are compared
first to benchmark methods in §5.1 and then to other published results
in §5.2 and §5.3.

Fig. 7. Median test rankings of classifiers on the eight benchmark problems.
Bars denote the 95% confidence interval.

5.1. Benchmark comparisons

We first compare the centroid-based classification strategy to the
‘bool’ and ‘float’ strategies for classification, as described in §2.1.3.
The test accuracies for the 8 benchmark problems are shown in Fig. 3.
Across problems, the nearest centroid method for classification outper-
forms the other two strategies for interpreting stack outputs.

For the 8 benchmark problems, the median best fitness on the test
sets for the first eight problems are shown in Table 3 with statistical
comparisons. M4GP, across selection methods, produces the best classi-
fiers in terms of test accuracy on five of the eight problems, and RF pro-
duces the best classifiers on the remaining three. The best-of-run classi-
fier accuracies over all trials for all methods on the test sets are plotted
in Fig. 4. Interestingly, the M4GP results are not typically best on the
training sets but tend to generalize well. This generalization capacity is
demonstrated by side-by-side comparisons of method rankings on train-
ing and test sets in Figs. 6 and 7, respectively.

Fig. 8. Mean dimensionality of most accurate classifier (on training data) each generation. Error bars indicate the confidence interval.
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Table 4
Comparison of F-measure on the Opportunity Activity Recognition data
set (locomotion) for subjects 1 and 2 (S1 and S2). M4GP is compared to
published results using one nearest neighbor (1-NN), SVM, SVM+1-NN,
decision trees (C4.5), k-NN, decision tree (DT) grafting, and Adaboost.
The team names are shown in parentheses. The best results in terms of
F-measure are highlighted in bold. For M4GP results, the median best
result of ten trials is shown with the 95% confidence interval.

Method F-measure (no Null class)

S2 S3

1-NN (NStar) 0.88 0.85
SVM (SStar) 0.87 0.83
SVM+1-NN (CStar) 0.90 0.83
C4.5 (NU) 0.83 0.63
k-NN (MI) 0.87 0.86
DT grafting (MU) 0.86 0.87
Adaboost (UT) 0.74 0.72
M4GP-lx 0.91 ± 0.00 0.89 ± 0.00
M4GP-ps 0.90 ± 0.00 0.88 ± 0.00

The performance of the three M4GP methods on training and test
sets over the duration of the run (generations) is shown in Fig. 5. It
is worth noting that for the Movl problem, which is one of the three
problems for which RF generalizes better, M4GP finds a perfect solution
to the training data within the first few generations, and prematurely
terminates. Past work also notes that this problem is an outlier in terms
of GP’s behavior [14,28]. On the Heart problem, M4GP-lx overfits to
the training data, as evidenced by the slow decline in test fitness over
the generations. Among selection methods, M4GP-ps ranks the best,
followed by M4GP-lx and M4GP-tn. On individual problems, M4GP-tn
did not outperform M4GP-ps or M4GP-lx; therefore, M4GP-tn was left
out of further tests.

5.1.1. Dimensionality of solutions
Growth in the dimensionality of the solutions is a concern, and so

we quantify how the best solutions change during training in Fig. 8.

Table 5
Run time for M4GP solutions.

Problem Cores Median Time (hr:min:s)

M4GP-lx M4GP-ps M4GP-tn

Heart 1 00:02:29 00:02:12 00:02:28
IM-3 1 00:02:30 00:02:49 00:02:14
IM-10 1 02:09:04 02:21:45 02:28:23
Movl 1 00:00:27 00:02:25 00:02:02
Seg 1 00:32:25 00:39:35 00:38:38
Vowel 1 00:04:21 00:20:37 00:15:57
Wav 1 01:36:44 01:30:17 01:35:12
Yeast 1 00:25:25 00:44:09 00:52:31
Opp S2 16 00:12:30 00:09:16 – (–)
Opp S3 16 00:11:51 00:08:47 – (–)

Differences between the selection methods are negligible except for on
the Yeast problem, where lexicase selection produces smaller solutions.
In general dimensionality growth is fairly flat aside for Wav, for which
solutions tend to grow throughout training. The Pareto archive (see
§2.1.4) used for the applications in the following sections helps address
the overfitting issue that can result from solution growth.

5.1.2. Computational cost
As a population-based method, M4GP’s main drawback in compar-

ison to other methods is computational cost, shown in terms of wall-
clock time in Table 5. Each trial of the initial eight problems from
Table 1 were run on a single core, so the reported time is the time
to evaluate population solutions in series. The times range from about
30 s for simple problems (e.g. Movl) to about two and a half hours for
larger sample size problems (e.g. IM-10). Unfortunately run-times of
the other methods were not available. The selection method used by
M4GP (lx, ps, or tn) does not appear to affect the computation times in
a significant way. For the Opportunity Activity Recognition problems,
parallel processing was used, which reduced run-times, as discussed in
the next section.

Fig. 9. Dimensionality reductions afforded by M4GP on the Opportunity Activity Recognition Challenge. M4GP solution sizes are compared to the original number
of attributes and a PCA dimensionality reduction preserving 98% variance. Here, ‘atts’ refers to the number of attributes used in the M4GP solutions, and ‘dim’ refers
to the dimensions in the solution (i.e. |Φ|).
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Fig. 10. Performance on the biomedical datasets. The subplot titles indicate the dataset; datasets are named by the convention 2w_[# attributes]a_[signal-to-noise
ratio]. From left to right, the signal-to-noise ratio increases; from top to bottom, the dimensionality of the dataset (and hence, difficulty) increases.

5.2. Opportunity Activity Recognition Challenge

The results of the Opportunity Activity Recognition problem are
shown in Table 4 where the results of M4GP are compared to those
from the original challenge in terms of F-measure (Eq. (7)). A number
of methods are reported for this problem, including nearest neighbor
(NN) classifiers, SVM, decision tree and ensemble versions thereof. For
both subjects tested, M4GP-lx and M4GP-ps produce better classifiers
than the competition, with lexicase selection performing slightly bet-
ter than Pareto survival. Because only single best results are reported

in literature, we are unable to provide statistical tests for these results.
However, we report the median F-measure on the test set for 10 trials
of M4GP-lx and M4GP-ps along with confidence bounds, indicating that
the median performance of M4GP exceeds the best reported result from
the competition.

5.2.1. Dimensionality reduction
We characterized the interpretability of M4GP models for this prob-

lem in terms of 1) feature selection and 2) dimensionality reduction. To
quantify 1), we compared the number of attributes in M4GP solutions

10
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Table 6
Significance comparisons of methods on the GAMETES problems using a post-hoc Friedman’s symmetry test. Results in bold
indicate p < 0.01.

LR XGBoost DNN TPOT-MDR M4GP M4GP+EKF TPOT-MDR+EKF

XGBoost 1 – – – – – –
DNN 1 1 – – – – –
TPOT-MDR 0.5 0.8 0.6 – – – –
M4GP 0.2 0.4 0.2 1 – – –
M4GP+EKF 0.001 0.005 0.002 0.4 0.8 – –
TPOT-MDR+EKF 1e-09 2e-08 4e-09 0.0002 0.003 0.3 –
MDR-Pred 2e-07 2e-06 2e-07 0.002 0.02 0.6 1

to the problem dimensionality; for 2), we looked at the solution dimen-
sions, i.e. |Φ|, compared to a principal component analysis (PCA) pre-
serving 98% variance. The results shown in Fig. 9 demonstrate that the
M4GP solutions to Opp S2 and S3 were small in size and used very few
features. The feature selection component is relevant to this particular
problem since it may which be beneficial for sensor or measurement
selection in future design of experiments.

5.2.2. Computational cost
The run-times of M4GP for Opp-S2 and Opp-S3 is shown in Table 5.

These problems have close to three times as many training samples as
IM-10 but were run on 16 core machines, which significantly reduced
the run-time to around 10 min. In this case, the problem is run in paral-
lel using an island model [2], in which the population is divided among
the cores and shuffled at set intervals. The resulting computation times
indicate the improvement afforded by parallel processing in GP meth-
ods.

5.3. Biomedical application

M4GP and M4GP+EKF are compared to LR, XGBoost, DNN, TPOT-
MDR, and TPOT-MDR+EKF on 16 GAMETES datasets in Fig. 10. The
results are compared in terms of 10-fold balanced accuracy over 30
trials of each algorithm. The problems are layed out in terms of diffi-
culty: the dimensionality of the datasets grows along the y-axis, and the
strength of the signal grows from left to right. Therefore, the bottom
left corner represents the hardest problem, and the top-right represents
the easiest problem. As mentioned earlier, MDR-Pred results indicate

approximately the best possible accuracy for each problem. The results
show that M4GP and M4GP+EKF outperform LR on every problem, and
outperform XGBoost and DNN on all but one problem (2w_10a_0.1). We
also find that M4GP+EKF is able to perform near to optimal (within
5% of MDR-Pred’s performance) on 13 of the 16 problems, whereas
TPOT-MDR+EKF performs near to optimal on 14 out of 16 problems.
The EKF feature selection filter clear improves the performance of both
M4GP and TPOT-MDR. Without EKF, M4GP outperforms TPOT-MDR by
greater than 10% accuracy on 8 of the problems, and performs similarly
(within 10%) on the other 8 problems.

To test the significance of these results, we conduct a Friedman’s
test of multiple comparisons on the entire suite of problems, which
indicates significant differences between the methods (p < 2.9e-15). A
post-hoc asymptotic symmetry test is then conducted, the results of
which we present in Table 6. The test finds no significant differences
between the three overall best methods: MDR-Pred, TPOT-MDR+EKF,
and M4GP+EKF, which supports our observations of Fig. 10. These
three methods all significantly outperform LR, XGBoost, and DNN
across these problems. TPOT-MDR+EKF outperforms TPOT-MDR and
M4GP significantly, whereas M4GP+EKF does not, indicating that
TPOT-MDR+EKF produces more consistently strong results compared
to M4GP+EKF.

5.3.1. Dimensionality of solutions
Fig. 12 demonstrates how the M4GP solutions appear in the Pareto

archive as feature sets. The archived models are the best trade-offs
between complexity and accuracy found during training. The red line

Fig. 11. Runtimes on the biomedical datasets. From left to right, the number of attributes in the datasets increase.
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Fig. 12. Archive of solutions from M4GP for 2w_100a_0.4her. Blue dots are
the training fitness of solutions in the archive, and red is the fitness of those
solutions on the holdout test set. The top 3 M4GP solutions are shown with
the interacting, predictive genes x_98 and x_99 in bold. (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

represents the test fitness of these models. As is typical, more complex
models often fail to generalize to the test set due to over-fitting. We
print the solution form at the “elbow” of the Pareto archive, and for
two models with the best generalization fitness. In both figures, the
models produced by M4GP identify the correct underlying features in a
simple form that is easily interpretable.

5.3.2. Computational cost and scaling
In general it appears that M4GP and M4GP+EKF achieve simi-

lar performance to TPOT-MDR and TPOT-MDR+EKF, respectively, on
these problems. Notably, the M4GP methods produce these results with
lower run-times, as shown in Fig. 11. Before we compare run-times,
we should note that the cluster environment is subject to unequal com-
putational loading between runs, which will affect the measurements;
however, all comparisons were run on the same hardware. M4GP and
M4GP+EKF take an average of 31 and 21 min to conduct 10-fold cross
validation, respectively, whereas TPOT-MDR and TPOT-MDR+EKF take
on average 1621 and 617 min, respectively. The run-time differences
between M4GP and TPOT-MDR are expected: whereas M4GP operates
over the space of mathematical operations and uses a fairly lightweight
nearest centroid classifier, TPOT’s search space consists of entire
machine learning pipelines, each of which must be trained each gen-
eration. The results here suggest the more lightweight approach is suf-
ficient for capturing the interactions between features embedded in the
GAMETES genetics data. Fig. 11 also shows that M4GP and M4GP+EKF
scale well with increased numbers attributes in comparison to TPOT-
MDR, TPOT-MDR+EKF, and LR. M4GP’s scalability to large feature
spaces is due to its representation, which allows the dimensionality of
solutions to adapt to the problem.

6. Discussion and conclusion

A new computational method for multi-class classification, based on
GP, was studied in this paper. The new method is called M4GP, and
it represents an improvement upon M2GP, M3GP and eM3GP, previ-
ous state-of-the-art techniques for multi-class classification with GP. It
extends these methods by introducing a stack-based data flow, inte-
grating advanced selection methods, and maintaining a Pareto archive
that preserves concise models and integrates into the final model selec-

tion step. M4GP performs significantly better than these GP methods
across all benchmark problems according to a Friedman test of rankings
for test accuracy. We further demonstrated that advanced evolutionary
selection methods, namely lexicase selection and age-fitness Pareto sur-
vival, perform better than tournament selection in producing accurate
classifiers. Across the range of studied problems, the results indicate
that M4GP is a competitive method for developing accurate classifiers
with good generalization ability. In addition to being accurate, M4GP
provides the flexibility to increase dimensionality for better classifica-
tion of small dimension problems, and to decrease both the dimension
of solutions and the number of necessary attributes for large dimen-
sion problems. For the Opp-S2 and Opp-S3 problems in particular, the
dimensionality of the classifiers produced by M4GP constitute a major
reduction from the original attribute space beyond that afforded by PCA
reduction and motivate further applications of this method to large
attribute problems. On a set of simulated genetics datasets from the
biomedical community, M4GP was also able to produce simple classi-
fiers that were as accurate as the best results in literature. The biomed-
ical application demonstrates the usefulness of maintaining a Pareto
archive of solutions when intelligibility is a key factor in modeling the
process.

We have found that the computation time of M4GP is quite reason-
able on a multi-core machine, with the largest sample size problems
requiring approximately 10 min to run on a 16 core machine. On the
biomedical datasets, M4GP scaled very well to large dimensions (5000
attributes) compared to other methods. Improvements to computation
time could be made by further parallelizing the execution of individual
models that can be run in parallel at the data (samples) and program
(nodes) levels. Note that in this work we only parallelize the evaluation
of the population of models.

There are several directions for future work that we briefly dis-
cuss here. For one, future work could investigate methods for miti-
gating the computational costs of M4GP. The largest computational
cost stems from the inversion of the covariance matrix to compute
the Mahalanobis distance (Eq. (2)). It may be possible to minimize
this cost by only maintaining a single model Φ and evolving a pop-
ulation that corresponds to the dimensions of Φ, thereby minimizing
the number of matrix inversions to once per generation. This approach
is taken by ensemble-based GP methods like FEW [19] and EFS [1].
Another avenue of research could investigate other methods of pairing
GP with classification strategies. M4GP implements a nearest centroid
approach for this task, and previous work, summarized in §2.1.1, has
explored other options. Nevertheless, it is not trivial to determine a
priori which method of classification will pair best with GP for fea-
ture synthesis for a particular task. This suggests further research into
classifier pairing optimization with GP feature selection and synthesis.
Finally, more work is needed to fully examine the role of variation oper-
ators in this approach. Future work could analyze the role of mutation
and crossover on multi-dimensional GP programs, with the potential to
improve search by leveraging extra information regarding the perfor-
mance of those sub-programs as features of the classifier. It may also be
of interest to explore whether or not variation operators with semantic
guarantees can be developed in this context.
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