
Engineering Applications of Artificial Intelligence 55 (2016) 292–306
Contents lists available at ScienceDirect
Engineering Applications of Artificial Intelligence
http://d
0952-19

n Corr
E-m
journal homepage: www.elsevier.com/locate/engappai
Inference of compact nonlinear dynamic models by epigenetic local
search

William La Cava a,n, Kourosh Danai a, Lee Spector b

a Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, USA
b School of Cognitive Science, Hampshire College, Amherst, USA
a r t i c l e i n f o

Article history:
Received 3 December 2015
Received in revised form
25 June 2016
Accepted 19 July 2016
Available online 6 August 2016

Keywords:
System identification
Genetic programming
Dynamical systems
Differential equations
Symbolic regression
x.doi.org/10.1016/j.engappai.2016.07.004
76/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: wlacava@umass.edu (W. La Cava)
a b s t r a c t

We introduce a method to enhance the inference of meaningful dynamic models from observational data
by genetic programming (GP). This method incorporates an inheritable epigenetic layer that specifies
active and inactive genes for a more effective local search of the model structure space. We define several
GP implementations using different features of epigenetics, such as passive structure, phenotypic plas-
ticity, and inheritable gene regulation. To test these implementations, we use hundreds of data sets
generated from nonlinear ordinary differential equations (ODEs) in several fields of engineering and from
randomly constructed nonlinear ODE models. The results indicate that epigenetic hill climbing con-
sistently produces more compact dynamic equations with better fitness values, and that it identifies the
exact solution of the system more often, validating the categorical improvement of GP by epigenetic local
search. The results further indicate that when faced with complex dynamics, epigenetic hill climbing
reduces the computational effort required to infer the correct underlying dynamics. We then apply the
method to the identification of three real-world systems: a cascaded tanks system, a chemical distillation
tower, and an industrial wind turbine. We analyze its solutions in comparison to theoretical and black-
box approaches in terms of accuracy and intelligibility. Finally, we analyze population homology to
evaluate the efficiency of the method. The results indicate that the epigenetic implementations provide
protection from premature convergence by maintaining diversity in silenced portions of programs.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A major goal of science is to characterize analytically the dy-
namic behavior of natural phenomena associated with biological,
ecological, social, and economic systems, as well as the dynamics
of artifacts such as wind turbines, robots, and aircraft. Dynamic
behaviors are usually characterized by differential equations
which in aggregate represent the dynamic model of the system.
These dynamic models are the essence of the simulations that
estimate/predict system behavior for policy decisions, design,
optimization, control, and/or automation. This paper presents a
method for construction of concise and mechanistically mean-
ingful dynamic models from observations.

Dynamic models are preferably formulated according to first
principles, to embody the knowledge of the process. However,
first-principles models cannot often fully characterize the non-
linear dynamics of the process, as represented by process ob-
servations. In regress, first-principles models may be abandoned in
.

favor of empirical models such as neural networks (Narendra and
Parthasarathy, 1990; Gregorčič and Lightbody, 2008), linear or
nonlinear autoregressive moving average (ARMAX) models (Ljung,
1999; Billings, 2013), or others (Ni et al., 1996; Sadollah et al.,
2015), that have the structural flexibility to accommodate the
measured process observations. Although these empirical models
provide an effective basis for estimation/prediction, they have two
major drawbacks. One is their ‘black-box’ format which obscures
the knowledge of the process acquired through adaptation. The
second is their case-specificity which makes them potentially
deficient in representing the process under conditions (inputs) not
encompassed by the measured observations. To remedy the black-
box nature of these empirical models, dynamic models consisting
of differential equations can be defined in algebraic form by
symbolic regression (Gray et al., 1998; Cao et al., 2000; Bongard
and Lipson, 2007), wherein both the structure (topology) and
parameters (constants) are inferred from measured observations.
Since these symbolic models are intelligible, they have the capa-
city to elucidate the process physics. Symbolic regression is typi-
cally conducted using genetic programming (GP) (Koza, 1992),
which is a bio-inspired machine learning technique that

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.07.004
http://dx.doi.org/10.1016/j.engappai.2016.07.004
http://dx.doi.org/10.1016/j.engappai.2016.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.07.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.07.004&domain=pdf
mailto:wlacava@umass.edu
http://dx.doi.org/10.1016/j.engappai.2016.07.004

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 293
constructs candidate models from mathematical building blocks
and proceeds with selection, recombination and mutation over
several generations before converging on a model that best fits the
process observations.

In comparison to system identification methods that presume
fixed model structures, symbolic regression can be computation-
ally expensive because of its expanded search space. Furthermore,
when guided solely by an error metric, it can yield unwieldy
equations that are elusive to physical interpretation. To remedy
these shortcomings, this paper introduces a new method of
symbolic regression that fine-tunes candidate model structures by
local search (La Cava et al., 2015). This fine tuning is enabled by the
addition of an epigenetic layer for selection of program compo-
nents (consisting of variables and instructions) to be included in
the model. The incorporation of this epigenetic layer is motivated
by two hypotheses: first, that the benefits of epigenetic regulation
observed in biology may confer analogous improvements on GP
systems; and second, that generalized local search methods en-
abled by epigenetics may improve the ability of GP to find correct
model structures.

As to the first hypothesis, despite the highly regulated nature of
biological genes, the role of epigenetics in regulating gene ex-
pressions is traditionally ignored in GP (with some exceptions, e.g.
(Ferreira, 2001)). However, epigenetic processes may provide
several evolutionary benefits. For example, because epigenetic
processes allow the underlying genotype to encode various ex-
pressions and lead to neutral variation through crossover and
mutation of non-coding segments, they may allow populations to
avoid evolutionary bottlenecks or let them respond to changing
evolutionary pressures (Jablonka and Lamb, 2002). Also, because
they provide for phenotypic plasticity that enables gene expres-
sion to change in response to environmental pressure (Dias and
Ressler, 2013), they may allow gene expression adaptations to be
inherited in offspring without explicit changes to the genotype.
This property legitimizes, via epigenetic processes, once dis-
credited ideas of Lamarck pertaining to the inheritability of life-
time adaptations (Jablonka and Lamb, 2002; Holliday, 2006).

Regarding the second hypothesis, although local search meth-
ods have been developed and integrated into evolutionary algo-
rithms (Gruau and Whitley, 1993; Whitley et al., 1994; Jeong and
Lee, 1996; Ross, 1999; Giraud-Carrier, 2002), especially in genetic
algorithms (GAs) through prescribed changes to the genotype, the
role of structure optimization in symbolic regression is typically
left to the GP process. Aside from some recent developments
(Arnaldo et al., 2014), local search is traditionally conducted at the
genome level. More generic local search methods, like tree snip-
ping (Bongard and Lipson, 2007), focus on improving secondary
metrics like size or legibility, whereas the traditional search
methods, like stochastic hill-climbing (Bongard and Lipson, 2007),
linear (Iba and Sato, 1994) or non-linear regression (Topchy and
Punch, 2001) are confined to constant optimization. Although
these local search methods improve symbolic regression perfor-
mance, they cannot aid the search for program topology.

Epigenetics, on the other hand, provide a natural basis for
performing local search at the structural (i.e., program topology)
level. Motivated by this benefit of epigenetics, we introduce in this
paper an epigenetics-enabled GP system to conduct topological
optimization of programs at the level of gene expression. The
contributions of this method are twofold: first, it introduces a
generic method of topological search of the space of individual
genotypes via modifications to gene expression. Second, it im-
proves programs without affecting the genotype and without
discarding the acquired knowledge gained through evolution,
thereby lowering the risk of premature convergence observed in
previous studies (Whitley et al., 1994). These contributions are
achieved by conducting local search on the epigenome rather than
the genome and making these adaptations inheritable via evolu-
tionary processes.

The proposed Epigenetic Linear Genetic Programming (ELGP)
method is tested on a large array of data generated from nonlinear
ordinary differential equations (ODEs), as well as from three real-
world processes, to evaluate the quality of its solutions. The paper
is organized as follows. We formulate in Section 2 the identifica-
tion problem and describe in Section 3 the ELGP method and its
application to inference of dynamic models. We also review the
relevant work in the context of GP and nonlinear dynamics
modeling in Section 4. We then present the experimental analysis
of different epigenetic implementations on a series of increasingly
complex problems in Section 5. We begin by testing the method
on a large set of data obtained from simulated nonlinear ODEs in
different engineering fields, in order to illustrate its breadth of
application. We then perform identification on hundreds of ran-
domly constructed nonlinear systems, varying in complexity and
dimensionality, to evaluate the scalability of the method in com-
parison to traditional GP approaches. Finally, we apply the ELGP
method to three real-world problems, including the identification
of (1) a benchmark cascaded tanks system (Wigren and Schou-
kens, 2013), (2) a chemical distillation tower, and (3) an industrial
wind turbine. The results are presented in Section 6 and include
comparisons of ELGP's performance in relation to other linear and
nonlinear identification methods. We finish this discussion with
an analysis of population diversity to study how gene expression
evolves for each ELGP implementation.
2. Problem statement

The underlying assumption of symbolic regression is that there
exists an analytical model of the system that would generate the
measured observations ()y tk at the sample times = …t t t, ,k N1

under the input, ()tu , as

νΘ() = ^ (*(*)) + = … ()y t y t M k Nu x u, , , , ; 1, , 1k k

where ŷ is the model output, ν represents measurement noise in
y, = […]x xx , , n

T
1 is the vector of state variables, and Θ*(*)M x u, , is

the correct model form embodied by the correct parameter values
Θ*, written *M hereafter for brevity. In the search for the correct
model form M*, GP typically attempts to solve the problem

S() ∈ ()f M Mminimize subject to 2

where S is the space of possible models M, and f denotes a
minimized fitness function. Given that it is impractical to ex-
haustively search S, the model found to minimize f(M) may only
be locally optimal. For practical purposes it is assumed that a sub-
optimal model can nevertheless fulfill the purpose of adequately
representing the process, as depicted by the measured
observations.

A common choice for estimating a candidate model output
^ ()y M is numerical integration or simulation of the state variables,
i.e. the “output error” method (Ljung, 1999). However, given the
sensitivity of simulation to different model structures (La Cava and
Danai, 2015) and the computational cost of numerical integration,
the alternative approach of algebraically estimating candidate
model outputs is preferred for symbolic regression (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). In the algebraic ap-
proach, un-measured states, denoted x̃ , are estimated from mea-
surements via numerical differentiation together with smoothing
functions. In the case of first-order differential equations with un-
measured state derivatives, the target is estimated numerically as

() = ̇˜y t xu,k , such that the prediction error of a candidate model
has the form

Fig. 1. Block diagram of ELGP. The typical GP steps are shown on the left. After
fitness evaluation and before selection, the population undergoes an iteration of
epigenetic hill climbing, represented by the block on the right.

Fig. 2. Stack-based execution of GP program i3 from Eq. (6). Arguments are pushed

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306294
Θϵ() = () − ^ (()) = ̇˜() − ̇̂ () ()t y t y t M x t x tx u, , , 3k k k k k

The fitness metric f in Eq. (2) for individuals is often defined
using the mean absolute error (MAE) or mean squared error
(MSE), although some prefer using the correlation coefficient due
to its insensitivity to linear scaling (Keijzer, 2003; Kommenda
et al., 2013). We use a fitness metric (La Cava and Danai, 2015)
designed to minimize error and maximize correlation so that both
the prediction error and the closeness of shapes defined by the
coefficient of determination (R2), are accounted for in the results.
This fitness metric takes advantage of the covariance comparison
afforded by R2 and avoids the need for post-hoc linear scaling of
the solutions which could lead to increased model complexity. For
target y and output ŷ, f is defined as:

∑= |ϵ()| (^)
()=

f
N

t R y y
1

/ ,
4k

N

k
1

2

()
=

(^)

() (^) ()
R

y y

y y

cov ,

var var 5
2

2

3. Epigenetic Linear Genetic Programming (ELGP)

In symbolic regression, the search for candidate models is
conducted by GP, wherein a population of computer programs,
consisting of variables and instructions that produce models of the
process, are evolved. Mathematical building blocks compose the
genotype of each program that is optimized by an evolutionary
algorithm. The operation steps of ELGP,1 outlined in Fig. 1, start
with randomly constructed programs that comprise an initial po-
pulation. The model outputs generated from these programs are
evaluated with respect to the training data. Depending on the
variant of ELGP as defined in Section 3, the population then un-
dergoes some form of epigenetic adaptation. Afterwards, the po-
pulation undergoes selection, recombination and mutation, as in
standard GP, to produce an updated population. The process re-
peats until an adequate solution is produced.

The ELGP method has two salient features that improve its
performance: (i) its use of linear, stack-based programs to re-
present equations, and (ii) its incorporation of local search of the
model structures space to improve the candidate model's fitness
and to reduce its complexity. These features have been shown to
bolster traditional GP's performance on several benchmark re-
gression problems in terms of the conciseness of the developed
models, their fitness, and efficiency of the search (La Cava et al.,
2014, 2015). The effectiveness of these features is evaluated here in
construction of nonlinear dynamic models.

3.1. GP representation

An innovation of the proposed ELGP method is its utilization
of stack-based representation (Perkis, 1994; Spector and Ro-
binson, 2002) to accommodate the introduction of epigenetics. In
this representation, programs are encoded as post-fix notation,
linear genotypes. This stack-based GP system is advantageous
because it guarantees syntactic validity for arbitrary sequences of
instructions. This property allows instructions to be silenced or
activated in a genotype without invalidating the program's ability
to execute, in contrast to tree-based representations that can
become syntactically invalid due to changes to instructions and
literals.
1 source code available from http://www.github.com/lacava/ellen.
The syntactic robustness of the stack-based approach is
achieved mainly by ignoring the execution of instructions that
have an arity larger than the current size of the stack. For example,
if a þ operator attempts to execute and there is only one element
on the stack, it does nothing. Furthermore, we base a program's
behavior only on the top element of the stack after execution
which allows programs to contain unused arguments. These two
rules are the key to accommodating diverse program syntax. Ac-
cording to this flexibility, for instance, the genotypes of the fol-
lowing three programs i1, i2 and i3 will produce the identical
model (+)x x1 2 :

= + ⇒ (+)

= + − * ⇒ (+)

= + + ⇒ (+) ()

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

x x M x x

x x M x x

u x x x M x x

i

i

i

:

/ :

/ : 6

1

2

3

1 2 1 1 2

1 2 2 1 2

1 1 2 3 1 2

The executions of � , * and / in i2 are ignored due to insufficient
stack size, and in i3, the last element of the executed stack,
(+)x x1 2 , is taken as the model. A step-by-step execution of pro-
gram i3 is given in Fig. 2 to illustrate the procedure.

3.2. Epigenetic learning and evolution

We introduce epigenetic information into the GP representa-
tion by including an on/off marker on each element in an in-
dividual's genotype. This corresponding sequence of on/off mar-
kers is referred to as an epigenome. When evaluated together, the
expressed program, i.e. model, is produced by executing instruc-
tions that are on (active) and ignoring the instructions that are off
(inactive). In this light, one can see that the non-coding genes
(known as introns (Wu and Lindsay, 1995) ignored in programs i2

and i3 in Eq. (6) provide local solutions to explore in the search
space, making it possible to alter the topology and values of the
resultant model. For example, program i3 can admit several
to the stack and operands (*, þ , etc.) pull arguments from the stack, perform an
operation, and push the result. Operands without sufficient arguments are ignored,
and the final element on the stack at the end of execution is returned as the model.

http://www.github.com/lacava/ellen

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 295
models via epigenetic transformations, including

→ ′ =
+ +

⇒ ′ (+)

→ =
+ +

⇒ ()

→ =
+ +

⇒ (+)
()

′′ ′′

′′′ ′′′

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

u x x x
M u x

u x x x
M u x

u x x x
M u x x

i i

i i

i i

1 1 0 0 0 1 1
/

:

1 1 1 1 0 0 0
/

: /

1 0 1 1 0 1 1
/

: /
7

3 3

3

3 3

1 1 2
3 2

3
1 1 2

3 1

1 1 2
3 1 2

Similarly, program i2 in Eq. (6) admits the models (+)x x1 2 ,
(−)x x1 2 , (*)x x1 2 , and ()x x/1 2 via epigenetic transformations.

During the ELGP process depicted in Fig. 1, the epigenetic
markers are initialized randomly (in the initial population) with a
probability of being active. We use 50% as the initial probability for
the experimental studies in Section 5, chosen according to a pre-
viously conducted parametric study (La Cava et al., 2014). The
extent to which epigenetic information is learned and inherited is
a research question that we address by exploring different im-
plementations. The simplest topological search method within
ELGP is Ep1M, which mutates the epigenetic layer of each in-
dividual each generation; the hill climber in Fig. 1 is skipped. Thus
for Ep1M, epigenetic mutations face only evolutionary pressures.
In contrast, the epigenetic hill climbing (EHC) cases EHC1, EHC5
and EHC10 use the epigenetic information explicitly to improve
individuals each generation (the EHC is described in Section 3.2.2).
The three methods execute one, five and ten iterations of EHC each
generation, respectively. Two control methods, Base and Ep0, are
used for comparison. In the Base case, individuals are represented
as basic genotypes as in Eq. (6). The Ep0 case acts like Base but
with half of the genes in the initial code permanently silenced. As
such Ep0 accounts for the effect that smaller active programs and
explicit introns might have. Neither Base nor Ep0 use the right half
of the system in Fig. 1 (i.e. the program never enters epigenetic
mutation).

3.2.1. Epigenetic mutation
Whitley et al. (1994) introduced Lamarckian updating to GAs by

conducting local search of the bit strings within 1 Hamming dis-
tance of the current bit string. In theory it would be possible to
treat the epigenome as a bit string and proceed similarly. However,
the cost of GP fitness evaluations may render this approach in-
tractable. Instead, each generation, the epigenome is uniformly
mutated with a probability of 10% at each gene. The mutation flips
the binary value of the epigenome at the gene, thus activating or
silencing that gene. The operation is uniform with respect to the
number of instructions. Epigenetic mutation is illustrated in Fig. 3
to show how these epigenetic changes can result in significant
topological changes to the resultant models. For the EHC1, EHC5
and EHC10 implementations, the epigenetic mutation is followed
by hill climbing, described next.
Fig. 3. Illustration of an epigenetic mutation applied to a GP program. The mutation
3.2.2. Epigenetic hill climbing
In order to mimic the acquisition of lifetime learning by epi-

genetic adaptation, the EHC implementations evaluate epigenetic
changes → ′i i to determine whether individuals should be up-
dated. At each iteration of epigenetic mutation, EHC1, EHC5 and
EHC10 test the changes to the model for acceptance. Epigenetic
changes to an individual are kept only if the fitness is improved or
not changed, i.e. ≤′f fi i (fitness f is being minimized).

In addition, we break fitness ties by preferring less complex
equations. Model complexity can be represented by several ap-
proaches. For example, one can count the number of nodes in the
parse tree, calculate the order of a Chebyshev polynomial fit to the
model's output (Vladislavleva et al., 2009), or recursively aggregate
the complexity of sub-expressions (Kommenda et al., 2015). Here,
we account for model complexity by assigning component func-
tion nonlinearities to genotype components (Smits and Kotanchek,
2005). The complexity Ci of program i with active genotype

= … ℓ
⎡⎣ ⎤⎦g gg a aa 1

is defined as = ∑ ()=
ℓC c gq ai 1 q

, where component
function nonlinearities (Smits and Kotanchek, 2005) are defined as

() =

(=) ∨ (=)
(=) ∨ (=)

(=) ∨ (= ())
()

⎧

⎨
⎪⎪

⎩
⎪⎪

c g

g g

g g

g g

4: log exp

3: sin cos

2: /

1: otherwise 8

a

a a

a a

a a

Lower-complexity programs with equivalent fitness are accepted,
giving the condition

()= (<) ∨ (=) ∧ (<) ()′ ′ ′pass f f f f C C 9i i i i i i

If the epigenetically mutated individual ′i does not pass Eq. (9), the
changes are discarded and i is kept in the population. Otherwise i
is replaced with ′i .

3.2.3. Epigenetic inheritance
A key feature of ELGP is the inheritance of epigenetic values

throughout the evolutionary process. During crossover, the epi-
genetic values of the parent genes are kept intact such that the
child receives the epigenetic states of the genes it has inherited. If
a new gene is introduced via genetic mutation, that gene has the
same probability of being active as the initial genes of the popu-
lation (50%, in the current study).
4. Related work

There has been some work to incorporate epigenetic learning
into GP, notably by Tanev and Yuta (2008). In that case the focus
was to model histone modification through a double cell re-
presentation as demonstrated in a predator-prey problem. Unlike
our approach, Tanev did not treat lifetime epigenetic modifications
as inheritable, as is supported by recent studies in biology (Turner,
s result in topological changes to the model (phenotype), shown on the right.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306296
2000; Kaati et al., 2002; Dias and Ressler, 2014). There have also
been a number of studies on the effects of non-coding segments in
GP, some of which have found that the structural presence of in-
trons protect genotypes from destructive crossover operations (i.e.,
operations that produce children less fit than their parents)
(Nordin et al., 1995; Wu and Lindsay, 1995; Brameier and Banzhaf,
2007). Non-coding segments were found to be useful in evo-devo
for evolution of arbitrary shapes as well (Fontana, 2011). In each of
these studies, introns were declared explicitly or measured during
evolution, rather than being actively manipulated by the system
itself as in ELGP. Our preliminary study of epigenetic initialization
finds rates of beneficial crossover to be the highest with the
probability set to 50% (La Cava et al., 2014).

In addition, several GP systems use similar stack-based or linear
genome representations, such as PushGP (Spector and Robinson,
2002), Push-forth (Keijzer, 2013) and Gene Expression Program-
ming (Ferreira, 2001), that could trivially implement the epige-
netic layer incorporated in the ELGP method. Similarly, there are
methods that leverage neutrality (i.e., different genotypes with the
same fitness) by creating a genotype - phenotype mapping; e.g.,
Cartesian GP (Miller and Thomson, 2000) and Binary GP (Banzhaf,
1994). Developmental approaches to GP (Koza et al., 1997) also
make use of genotype – phenotype mappings. Our goal with ELGP
is to incorporate local search of gene expression as a viable, gen-
eric GP extension that does not require large changes to imple-
ment. As mentioned earlier, there are a plethora of studies on local
search methods for improving GP by Lamarckian or Baldwinian
means, yet very few have considered these changes to occur at the
epigenetic level instead of the genotype level. A notable exception
is Multiple Regression GP (Arnaldo et al., 2014), in which para-
meter values are implied at each node location and updated by
linear regression. Still, the tangible improvements brought about
by this and most other local search methods for symbolic regres-
sion are achieved by parametric, rather than topological, search.

Several methods based on GP have been proposed for modeling
nonlinear dynamic systems, including ODE model structures (Gray
et al., 1998; Cao et al., 2000; Bongard and Lipson, 2007; Schmidt
and Lipson, 2009) and GP-NARMAX models (Rodríguez-Vázquez
and Fleming, 2004; Rodriguez-Vazquez et al., 2004). GP popula-
tions are often evolved with multi-objective methods like SPEA2
(Zitzler et al., 2001) and NSGA-II (Deb et al., 2000) to pressure
model size. Unlike ELGP, these techniques for compact modeling
focus on changes to the core GP algorithm (selection and fitness
evaluation). In this regard, ELGP could be readily applied in those
proposed frameworks. The multiobjective framework we use in
our experiments is that proposed in Schmidt and Lipson (2011), as
discussed in Section 5.1.

More broadly, GP is one approach to nonlinear system identi-
fication, among many others. A common approach embodied by
Hammerstein-Weiner and nonlinear auto-regressive modeling
with exogenous inputs (NARX) is to combine a chosen nonlinear
transformation (or transformations) with a linear model. Although
the use of a nonlinear estimator can increase the capacity com-
pared to ARX modeling, per say, in both cases the structure of the
nonlinearity must be specified beforehand, contrary to symbolic
regression. These approaches also produce complex models that
can obfuscate intuitive explanations of their predictive power. To
remedy this, greedy structure selection methods have been pro-
posed for nonlinear polynomial models (Haber and Unbehauen,
1990), notably for the NARMAX model using the orthogonal least
squares (OLS) (Chen et al., 1989; Billings, 2013). GP methods have
also been proposed to optimize the structural identification of OLS
models (Madar et al., 2004). The goal of ELGP is to improve the
ability of GP representations to produce intelligible model struc-
tures, which in turn can be applied to auto-regressive re-
presentations (La Cava et al., 2015) and/or coupled with a desired
parameter estimation strategy (Iba and Sato, 1994; Topchy and
Punch, 2001; Kommenda et al., 2013).
5. Experimental methods

We describe in this section the evolutionary framework to
which ELGP is applied and the settings that are used to conduct
the experiments, followed by a description of the set of problems
that are used to compare the performance of each GP treatment.
Section 5.1 describes the algorithms used to perform selection and
search operations within GP, which build upon previous symbolic
regression research. In Section 5.2, we describe implementation
optimizations related to efficiently performing hill climbing on
epigenetically mutated programs. Finally in Section 5.3 we present
the set of problems on which ELGP is evaluated, which include
simulated ODEs from various fields, randomly constructed ODEs
that vary in complexity, and three real-world nonlinear dynamics
modeling applications.

5.1. Evolutionary algorithm

Several state-of-the-art symbolic regression tools leverage
Pareto optimization for selection and survival (Smits and Kotan-
chek, 2005; Schmidt and Lipson, 2009), and our preliminary tests
(not reported here) confirm that the age-fitness Pareto survival
method (Schmidt and Lipson, 2011) outperforms traditional GP
(Koza, 1992) on several problems. In an effort to demonstrate ELGP
on a high-performance configuration, we use age-fitness Pareto
survival as the evolutionary algorithm in our experiments. In this
scheme, each individual is assigned an age equal to the number of
generations since its oldest ancestor was created. Each generation,
a new individual is introduced to the population as a means of
random restart. Selection for breeding is random, and during
breeding a number of children equal to the overall population size
is created. At the end of each generation, environmental selection
is conducted according to the Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) (Zitzler et al., 2001) to reduce the size of the set P
comprising the current population plus the newly created in-
dividuals down to the original population size N. Note that the
hypervolume method from NSGA-II (Deb et al., 2000) could also be
used for this task, although previous work suggests that SPEA2
performs better in low dimensions (Zitzler et al., 2001).

SPEA2 uses two measures to perform this reduction of P:
(1) Pareto strength of an individual, ()S i , which is the number of
individuals equal to or dominated by i, divided by | | +P 1, and (2) a
density estimate () <D i 1, based on the inverse of the distance to
the k-th nearest neighbor (Silverman, 1986) of i in objective space
(in this case the objectives are normalized between zero and one).
These metrics are used to define a fitness value ()F i that combines
the total strength of the individuals ∈ Pj that dominate i, denoted
as ≺j i, with density estimate ()D i , as

∑() = () + ()
()∈ ≺

F S Di j i
10j P j i,

Every nondominated solution is first copied to the new popula-
tion. If the new population size is smaller than N, individuals are
added in order of lowest ()F i . If the population is larger than N,
signifying that there are more than N nondominated solutions,
individuals are removed iteratively based on ()D i . In the latter
scenario, the use of ()D i for selection helps preserve spread of
solutions along the Pareto front.

A uniform alternation crossover operator is used to produce
two children from two parents, as in Spector and Helmuth (2013).
The mutation operator is applied uniformly to the chosen parent
with a probability of 2.5% at each gene. If a constant gene is picked

Table 1
ELGP system settings as applied to the Textbook ODE problems.

General settings Value

Population size 1000
Crossover/mutation 80/20%
Program length limits [3, 50]
ERC range [�10,10]
Termination criterion 2.5E10 point evals or < −f 1.0E 6
Trials 100
Function set { + − * }, , ,/, sin, cos

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 297
for mutation and ephemeral random constants (ERCs) are being
used, the constant is perturbed by Gaussian noise with standard
deviation equal to half the magnitude of the constant. Otherwise
the instruction is mutated to a randomly chosen gene.

In order to optimize the parameters (constants) of the models,
one iteration of stochastic hill climbing is conducted on model
parameters each generation. The hill climber perturbs all constant
values in the active genotype by Gaussian noise with a standard
deviation equal to 10% of the value of the constant. These changes
are kept if they result in a better fitness for the individual. This
method of constant optimization is chosen due to its lightweight
nature compared to least-squares approaches.

Each trial was allocated a maximum number of point evalua-
tions, i.e., gene executions, to normalize for the different program
sizes among methods. A GP run will exit early if the fitness con-
dition < −f 10 6 is achieved before the designated number of point
evaluations has been reached. We observed this fitness termina-
tion condition to be sufficient for reaching exact solutions for the
problems studied here.

5.2. Optimizations

The following optimization provisions are applied to ELGP in
order to reduce the number of point evaluations required to
evaluate the fitness of an individual that has undergone epigenetic
mutation. The majority of run-time in most GP systems (including
ours) is devoted to fitness evaluation. This motivates reduction of
the number of point evaluations required.

Fitness escape. EHC requires additional fitness evaluations in
order to determine whether the prescribed epigenetic changes
will be kept. Given that the fitness fi of program i cannot decrease
with the evaluation of more fitness cases …k n1 , evaluation of the
epigenetically mutated individual ′i can be halted if at any point

(…) > (…)′f k f k1 1j ni i for ≤ <j n1 . This allows ′i to be discarded
before its fitness is fully evaluated because it is guaranteed to be
worse than i. Since fitness is always equal to or larger than MAE
(see Eq. (4)), the halt condition can be defined conservatively using
the mean absolute error (MAE) of ′i and the fitness of i as

∑= | () − ()| >
()=

′halt
N

y t y t M f
1

,
11k

j

k k i i
1

Stack tracing. In GP tree representations, the output of a node in
the program typically depends only on the outputs of its child
nodes (and those children's children and so forth). We can say
conservatively with ELGP representations that no instruction in
the stack is dependent on an instruction to its right. Therefore,
when a gene is silenced or activated, only the outputs of the genes
to its right in the genotype are affected, hence only part of the
program needs to be reevaluated. To avoid repeated instruction
evaluations during epigenetic hill climbing, we save the inter-
mediate program outputs of each gene, and after epigenetic mu-
tation reevaluate only those genes to the right of the left-most
location of mutation.
Saving the stack outputs is a trade-off between memory and
time resources since it requires more memory to save the inter-
mediate outputs but requires fewer point evaluations to evaluate
epigenetically mutated individuals. The trade-off is favorable in
our implementation because processor resources are much more
limited than memory resources. Similar partial evaluation strate-
gies have been proposed, e.g., in Langdon (2012).

5.3. Problems

The methods are first compared on a set of coupled, two-state
nonlinear ODEs adapted from Strogatz (2014) and proposed in
Schmidt (2011). Second, they are tested for scalability against a
suite of hundreds of randomly generated ODE problems with
varying complexity and dimensionality. Finally, ELGP is applied to
the identification of nonlinear dynamics of three real-world pro-
cesses, including a pump-fed system of cascaded water tanks, an
industrial chemical distillation tower, and an industrial wind
turbine.

5.3.1. Textbook ODE problems
The textbook ODE problems represent seven two-state, non-

linear systems from the fields of biology, electrical engineering,
physics, ecology, and fluid dynamics. For brevity, the form of the
models is shown alongside identification results in Table 3. In
accordance with Schmidt (2011), each system is simulated for 10
seconds from 4 different initial conditions chosen randomly
within stable basins of attraction, giving a total of 400 data points
for training. The settings for each problem are summarized in
Table 1. In order to give a measure of nonlinearity and/or difficulty
of these identification problems, we also use multiple linear re-
gression (LR) to estimate models for these systems. The LR models
are estimated as a weighted sum of the states (in this case the

systems have no external inputs), i.e. β^ = ^y x
T

, where β̂ is the
least-squares solution minimizing the sum of the squared pre-

diction error: β∑ (() − ^ ())= y t txk
N

k
T

k1
2.

5.3.2. ODE suite
In order to test the scalability of the methods, random ODE

systems were generated of varying size (nodes) and dimension-
ality (number of variables). This approach to scalability testing is
used in order to remove problem selection bias and to quantify the
methods' performance with different target complexity (Schmidt
and Lipson, 2007; Cornforth and Lipson, 2013). The dynamic sys-
tems were generated in the following fashion. First, differential
equations were randomly generated using the same equation
generation technique that initializes populations of equations.
Second, the equations were simulated as first-order differential
equations (using Runge-Kutta 4) according to a random set of in-
itial conditions from the range [�5,5]. The outputs of these si-
mulation runs were included in the training set. The validation set
was subsequently generated by simulating the equations with
initial conditions randomly selected from the range [�10,10].
Equations that produced invalid outputs were discarded. Finally,
the valid equations were simplified symbolically in MATLAB in
order to determine their most succinct representation, and binned
by number of nodes and dimensions. The result of the entire
process was 640 unique ODE problems of 3 to 33 nodes and 1 to
8 variables that were subjected to 10 trials of identification, for a
total of 6400 trials per GP treatment. The ODE suite settings are
summarized in Table 2.

5.3.3. Real-world applications
We consider three real-world applications of ELGP. The first is a

benchmark cascaded tanks system consisting of three measured

Table 2
ODE suite problem settings.

ODE suite settings

Number of nodes 3–33
Dimensions 1–8
Models per setting 5
Trials per model 10
Total models 640
Total trials 6400
Function set { + − * }, , ,/, sin, cos, exp, log

2 http://symbolicregression.com/?q¼towerProblem.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306298
variables. The second two come from complex industrial processes
with 25 (chemical tower) and 8 (wind turbine) measured vari-
ables. All three processes are known to exhibit nonlinear
dynamics.

In order to analyze ELGP's performance in the context of other
nonlinear modeling approaches, we compare the quality of the
ELGP's solutions to these problems with solutions from standard
linear and nonlinear empirical modeling approaches. The models
were developed using ARX and two NARX approaches with dif-
ferent nonlinear transformations: wavelet networks (NARX-W)
and feed-forward neural networks (NARX-NN). We used the MA-
TLAB System Identification toolbox (Ljung, 2007) to generate these
models using default settings. For the wavelet network, the set of
nonlinear regressors was computed using a radial wavelet ex-
pansion with an automatically determined number of terms. For
the NARX-NN, a feedforward network with 10 hidden neurons was
constructed and trained with back-propagation learning using the
Levenberg-Marquardt algorithm. In order to provide uniformity
among the predicted outputs of these models and that of ELGP's
solutions, the ELGP models were simulated on the test sets, such
that prediction error (Eq. (3)) was defined in terms of the simu-
lated output ^ ()y tk rather than the state derivatives.

Benchmark system. In order to study the performance of ELGP
on a real-world benchmark problem, we performed identification
based on a set of observations collected from two cascaded tanks
fed by a water pump (Wigren and Schoukens, 2013). Using the
Bernoulli principle and mass conservation, this system can be re-
presented by the following nonlinear equations:

θ θ

θ θ

̇ = − + () + ()
̇ = − + () ()

h h u t w t

h h h w t 12

1 1 1 2 1

2 1 1 3 2 2

= () + ()

= () + () ()

y h t e t

y h t e t 13

1 1 1

2 2 2

where θ = − a g

A1
21

1
, and θ = − k

A2
1
, θ = a g

A3
22

2
. States h1 and h2

represent the water levels in the upper and lower tanks, respec-
tively; a1 and a2 are the outlet areas; A1 and A2 are the horizontal
cross sections of the tanks; g is the gravitational constant; k is the
pump voltage to flow conversion constant; ()w t1 and ()w t2 are
system noise; and ()e t1 and ()e t2 are measurement noise.

The data set comprises 2500 samples, acquired at a sampling
period of 5 seconds. We divided this set 50/50 for training and
testing. These data have been proposed for benchmarking non-
linear system identification approaches (Wigren, 2006) and are
freely available (Wigren, 2010). For ELGP, we use EHC5 with the
settings of Table 1 and an increased function set
{ + − * () }, , ,/, sin, cos, exp, log, . For ARX and NARX, identifica-
tion of these models was performed as a first-order function of the
input, i.e. with the regressors (−)y t 1k1 , (−)y t 1k2 , and ()u tk .

Industrial processes. In addition to finding exact solutions to
known systems, ELGP should be able to identify reliable models of
real-world systems for which no true model is known. To this end,
two complex industrial problems are also considered in this work.
The first is the Tower problem,2 consisting of a set of 15-min
averaged time series data taken from a chemical distillation tower,
totaling 3135 samples. The goal is to predict the propylene con-
centration at the top of the tower from 25 measured variables. The
second problem, referred to as the Wind problem, features data
collected from the Controls and Advanced Research Turbine, a
600 kW wind turbine operated by the National Wind Technology
Center (Fleming et al., 2011). The data set consists of 6000 time-
series measurements of wind speed, control actions, and accel-
eration measurements that are used to predict the bending mo-
ment measured at the base of the wind turbine.

For these two problems, solutions are formulated as fifth-order
discrete-time dynamic models of the form

ζ ζ Θ^ (^ (−)…^ (−) ()… (−) ^)M y t y t t t1 5 , 5 ,k k k k in terms of model out-

puts ŷ, measured variables ζ , and model parameters Θ̂. This for-
mulation was used with the ELGP, ARX and NARX-NN methods.
6. Results and discussion

We first present results obtained on the textbook ODE pro-
blems in Section 6.1. Comparisons include the number of exact
solutions, the fitness of the best solutions, and complexity of the
best models found by each method. Next we analyze in Section 6.2
the ODE suite results according to fitness as a function of point
evaluations in training and testing over the entire suite. To give a
sense of the scalability of the methods, we group the results by
target complexity and compare the number of solutions found and
the computational effort spent to reach these solutions. We then
compare the ELGP solution with a few black-box models obtained
from the experimental data of a real world benchmark identifi-
cation problem in Section 6.3 and two industrial problems in
Section 6.4. We end our analysis with a detailed look at population
diversity of the Bacterial Respiration problem, which provides in-
sight into the mechanics of the variants of ELGP (Ep1M, EHC1,
EHC5, EHC10), particularly the EHC methods (EHC1, EHC5, EHC10),
that lead to the better solutions obtained on many of the studied
problems.

6.1. Textbook ODE problems

As a preliminary evaluation of the intelligibility of ELGP's so-
lutions, the most frequent solutions to the textbook ODE problems
that were found using Base and the ELGP variant EHC5 are com-
pared against the target model forms in Table 3. Particularly no-
teworthy are the differences observed between the Base and EHC5
solutions for the Bacterial Respiration (1 and 2), Bar Magnets (1),
Predator Prey (1 and 2), and van der Pol oscillator (1) identifica-
tions. In each of these cases, EHC5 more often identifies the exact
solution, or at least an approximation of it that is less complex
than that inferred by Base. In some cases, e.g. Bacterial Respiration
1 and van der Pol 1, the approximate solutions from EHC5 have
most of the terms of the target correct, and thus form a sensible
approximation of the true system. Note that the Base solution to
Predator Prey 2, i.e.,

̇ = (+)·
+

− ·⎜ ⎟⎛
⎝

⎞
⎠y y

x
x

y0.01059
1.004

0.07488

could be made more correct through the change
(+) →y y0.01059 . This type of topological model change is easily
reached via epigenetic transformations, and, as is shown in

http://symbolicregression.com/?q=towerProblem
http://symbolicregression.com/?q=towerProblem
http://symbolicregression.com/?q=towerProblem
http://symbolicregression.com/?q=towerProblem

Table 3
The textbook ODE problems (left). The models generated by Base and ELGP variant EHC5 are shown on the right.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 299
Table 3, EHC5 more frequently identifies the underlying target
model for this problem.

A central goal of ELGP is to bolster the performance of GP in
system identification through local topological search. To this end,
the number of solutions, median best fitness and average equation
size (number of active nodes) for the different methods are sum-
marized in Tables 4 and 5. Pairwise statistical comparisons are
given for each result. Note that three of the identification tasks
(Glider 2, Shear Flow 1, and van der Pol 2) are exactly identified
100% of the time by every GP treatment, suggesting that they are
easy for GP to solve. For the eleven other problems, the results
show that the training and test fitnesses and solution counts are
improved by EHC. For example, on each of these eleven problems,
the ELGP variant EHC10 finds significantly (<p 0.05) more exact
solutions and produces models with better training and test fit-
nesses than Base, Ep0 or Ep1M, as indicated by highlighting, bold
text, and * in the tables. In terms of fitness, EHC5 provides a sig-
nificant improvement relative to Base on eight out of eleven and
EHC1 performs better on five out of eleven problems, thus sug-
gesting that results improve with more iterations of EHC. Among
the eleven more difficult problems, all of the EHC methods per-
form significantly better than Ep0 or Ep1M, in terms of fitness as
well as exact solutions. Overall the results of Ep0 or Ep1M show a
marginal to negative difference in estimation capacity compared
to Base. The guided search provided by EHC, therefore, is key to
the observed improvements.

The results indicate that every GP method produces better
models than linear regression (LR) for these problems (with the
exception of the linear second state of the van der Pol problem),
which is to be expected given the known nonlinear nature of this
set of problems. However, LR has the advantage of quick training
times, with median convergence times on the order of 0.01 s for
these problems, as shown in the last column of Tables 4 and 5. The
GP methods converge to the minimum fitness model in approxi-
mately 1–100 s, depending on the difficulty of the problem. It is
worth noting that the EHC methods do not increase the compu-
tation time compared to Base, and occasionally decrease it, which
can be attributed to the lower proportion of optimization spent
conducting GP generations and the higher proportion spent in
EHC. The majority of ELGP computation times are not significantly
different from Base. These convergence times suggest that the
proposed identification methods may be suitable for certain online
applications, depending on the time window constraints between
model updates.

In addition to improving predictive ability, a motivation for
the ELGP design is the delivery of concise solutions. This prop-
erty is evident from the average program sizes in Tables 4 and 5.
To further evaluate this aspect of the results, in Fig. 4, the best
solutions of the 100 trials are evaluated in terms of Solution
Bloat, defined as the difference in complexity (Eq. (8)) between
the GP solution and the target. These results show that the ELGP
variants all produce solutions that are more succinct than those
achieved by Base. Among ELGP variants, Ep0 or Ep1M produce
the most succinct models. The EHC methods also produce more
succinct models with less solution bloat than Base; however, it is
observed that the hill climbing aspect of EHC leads to slightly
larger models than Ep0 or Ep1M. Nevertheless, in addition to
producing more succinct models than Base, the EHC methods
find exact solutions more often for most problems, as shown in
Tables 4 and 5.

6.2. ODE suite

To evaluate the ability of ELGP to scale to problems of in-
creasing complexity, we evaluate the performance of the treat-
ments Base, Ep0, Ep1M, EHC1 and EHC5 on a suite of 640 ran-
domly generated target systems. The best fitness on training and
test sets for the entire ODE suite is shown in Figs. 5 and 6 as a
function of point evaluations. The results indicate the better fitness
minimization properties of the ELGP variants EHC1 and EHC5. The
number of solutions found, and the computational effort to reach
those solutions, are plotted in Figs. 7 and 8, respectively. The re-
sults are broken into groups based on the number of arguments
and operands (i.e. nodes) in the solution equation, for example 7,
9, 11, and so on. Fig. 7 demonstrates the ability of the ELGP var-
iants, especially EHC5, to find more solutions than Base or Ep0,
and the difference in performance grows as the number of nodes
in the solution increases, although the overall number of solutions

Table 4
Comparison of best-of-run results for the ODE benchmark problems. Statistical significance (<)p 0.05 is denoted as
follows: ⋄: better than MR; : better than Base; bold: better than Ep0; *: better than Ep1M; †: better than EHC1; ‡:

better than EHC5. Exact solution p-values are based on pairwise chi-squared tests with Holm correction. Fitness and bloat
p-values are based on pairwise Wilcoxon rank-sum tests.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306300
decreases with more complex targets. In addition, EHC1 and EHC5
tend to find solutions with less computational effort than the
other methods, as demonstrated in Fig. 8, where we plot the
number of point evaluations to termination for the trials in which
exact solutions were found. The results also suggest that the
computational effort improvement afforded by EHC increases with
the complexity of the problem.

6.3. Real-world benchmark system

In this section, EHC5 and several standard modeling ap-
proaches are applied to the identification of a benchmark system
of cascaded tanks fed by a pump (Wigren, 2010). Since the true
parameters of the system are not provided in Wigren (2010), we
first estimate the parameters of the model in Eq. (13) by linear
regression, which yields
̇̂ = − ^ + ()

̇̂ = − ^ + ^ ()

y y u t

y y y

0.0122 0.0188

0.0481 0.0452 14

1 1

2 1 2

In comparison, EHC5 applied to the measured data yields

θ θ

θ θ θ

̇̂ = − ^ ^ + ^ ^

̇̂ = − ^ ^ + ^ (() + ^) ()

y y y

y y u t 15

1 1 1 1 2

2 2 1 2 3

where θ̂ = 0.09051 , θ̂ = 0.03022 , and θ̂ = 0.68453 . The model in Eq.
(15) is an interesting permutation of the theoretical model (Eq.
(14)) in that it correctly identifies the square root nonlinearities of
the water levels and is as succinct as the theoretical model.
However Eq. (15) incorrectly associates the pump input u(t) and
top tank level ()y t1 with the second state derivative, and uses the

theoretical form of ̇̂ ()y t2 in Eq. (14) for the first state derivative ̇̂y1

Table 5
Comparison of best-of-run results for the ODE benchmark problems. Statistical significance (<)p 0.05 is denoted as
follows: ⋄: better than MR; : better than Base; bold: better than Ep0; *: better than Ep1M; †: better than EHC1; ‡:

better than EHC5. Exact solution p-values are based on pairwise chi-squared tests with Holm correction. Fitness and bloat
p-values are based on pairwise Wilcoxon rank-sum tests.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 301
in Eq. (15). In comparison to the theoretical model, however, the
ELGP solution produces much better predictions, as illustrated by
the time series comparison in Fig. 9.

For this system, we compare the test set accuracy of the EHC5
model to some state-of-the-art black-box models in Table 6, in
terms of the number of parameters in the resultant model, and the
mean square error (MSE) and R2 (Eq. (5)) of simulated outputs on
the test set. The most accurate model predictions are generated by
NARX-NN, both in terms of MSE and R2, followed by ELGP, which
ties NARX-NN in prediction correlation for ()y t2 . ARX is the next
most accurate on average, followed by the theoretical model and
NARX-W. In comparison to the predictions of ŷ1 and ŷ2 from the
ARX model, the ELGP model has a 42% and 18% lower mean ab-
solute error, and 4% and 1% better R2 value. The inaccuracy of
NARX-W is surprising given its complexity (64 parameters), and
suggests a mismatch between the assumed nonlinearities of the
approach and those present in the measured system. The NARX-
NN model's excellent predictions come at the expense of com-
plexity: the model consists of two networks with 10 hidden
neurons each, totaling 60 learned parameters per model. In this
sense the ELGP solution is quite reassuring because it achieves
reasonable accuracy in prediction with half the parameters of the
ARX model and 57 less parameters than the NARX-NN model.

The difficulty in estimating the correct model form for this sys-
tem (Eq. (14)) may stem from the similarity of the measured outputs

()y t1 , ()y t2 , as is shown in Fig. 9, as well as the effects of system noise
and measurement error (()e t1 , ()e t1 , ()w t1 , ()w t2). It is especially clear
from Fig. 9 that the measured ()y t2 deviates substantially from its
theoretical behavior, making the theoretical model difficult to infer.
More fundamentally, the identification difficulty could stem from an
intrinsic difficulty for ELGP in handling processes of this form sub-
ject to the measured input conditions. To determine whether or not
the intrinsic difficulty of this system affects ELGP's results, we si-
mulate the theoretical system given in Eq. (14) using the measured

Fig. 4. Comparison of solution bloat for the textbook ODE problems.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306302

Fig. 5. Fitness on the training set for the ODE suite.

Fig. 6. Fitness on the test set for the ODE suite.

Fig. 7. Percent of solutions found for the ODE suite. Results are grouped based on
the number of nodes in the target equation (labeled at the top).

Fig. 8. Point evaluations to success for the ODE suite. Results are grouped based on
the number of nodes in the target equation (labeled at the top).

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 303
input and use the resulting outputs (^ ()y t1 , ^ ()y t2 , u(t)) to train models
using EHC5. In this case, EHC5 renders a nearly perfect model of the
theoretical system:

θ θ θ

θ θ θ

̇̂ = − ^ (^ ^) + ^ ()

̇̂ = − ^ ^ + ^ (^ ^) ()

y y u t

y y y / 16

1 1 2 1 1

2 3 1 3 2 4

with θ̂ = 0.01881 , θ̂ = 0.42002 , θ̂ = 0.04523 , and θ̂ = 0.88304 . Both
states in Eq. (16) have an < −MSE 10 6 and =R 12 . Thus the mismatch
between the ELGP model form and the assumed process physics
appears to arise from system noise and measurement error.
6.4. Industrial processes

The GP variants were used to identify models for two industrial
processes: the Tower problem and Wind problem. We compare the
fitness of the different GP methods as a function of computational
effort (point evaluations) for the Tower andWind problems in Fig. 10.
For both problems, EHC1 converges most quickly to the minimum
fitness found for the problems. For the Tower problem, we observe
that Ep1M performs well on the test set, and as suggested in previous
work (La Cava et al., 2015), this may be due to the compact models
produced by this method for this problem, since smaller models tend
to generalize better than larger models. On the Wind problem, EHC1
and EHC5 converge the quickest and produce the best fitness on the
test set. Ep0 and EHC10 tend to performworse than EHC1, suggesting
that EHC10 is overly greedy for these problems. Overall, the ELGP
variants perform significantly better than Base on both problems,
converging approximately twice as fast as Base and producing better
fit models.

Fig. 9. Comparison of outputs for the cascaded tanks problem, including mea-
surement data (solid gray), the theoretical model (Eq. (14), dashed red), and the
ELGP model (Eq. (15), dot-dashed blue). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 6
Mean square error (MSE) and R2 values of model predictions on the test sets for the
cascaded tanks problem using several approaches.

Table 7
Mean square error (MSE) and R2 values of model predictions on the test sets for the
Tower and Wind problem using several approaches.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306304
We compare the best ELGP models to models identified using
ARX and NARX-NN in Table 7. For the Tower problem, the ELGP
model is a notable improvement over the linear model (note the
279% higher R2 value), but is slightly less accurate than the model
generated using NARX-NN (4% lower R2). However it is important
to note that the high number of variables in this problem produce
a neural network with 250 parameters, whereas the ELGP model
contains only 7. For the Wind problem, ELGP produces the most
accurate model among the tested methods. The MAE of the models
Fig. 10. Fitness on the test set for the industrial problem
generated by each method are similar; however, the correlation of
the ELGP model to test data is 20% better than the ARX model, and
6% better than the NARX-NN model. The ELGP model also contains
significantly fewer parameters than the ARX or NARX-NN models.
Hence the conciseness of the ELGP models is an encouraging
trade-off for the accuracy they exhibit.

6.5. Population diversity

Results on the textbook ODEs and the ODE suite suggest that
the EHC methods improve GP performance significantly. We hy-
pothesize that this improvement is created by preserving sections
of the genome from fitness pressure and allowing them to drift
genetically, thus providing an avenue for introduction of diversity
and continued progress towards the solution. To test this hy-
pothesis, the syntactic and semantic similarity of models in the
population can be examined in detail to determine whether this
phenomenon of preserved diversity is evident. We define syntactic
similarity as the homology H of a population using a Levenshtein
distance comparison of S randomly sampled pairs of individuals
(| |)i i,j m L normalized by the length (|·|) of the longer individual, as

∑= −
| |

(| | | |) ()=

H
S

i i
i i

1
1 ,

max , 17n

S
j m L

j m1

We sample H each generation for both the active and inactive
portions of genomes with S¼200. In addition, we define the se-
mantic; i.e., behavioral, similarity of the population, referred to as
Similar Behavior, as the fraction of identical output vectors among
models in the population. This allows us to compare what is
happening genetically and epigenetically at the program level
(syntax) to the behavior of the resultant models (semantics).

In general we find that silenced genotypes have lower
s. Filled area indicates the 95% confidence interval.

Fig. 11. Homology among active and inactive genomes for the Bacterial Respiration
2 problem.

Fig. 12. Similar Behavior (fraction of unique output vectors in the population) for
the Bacterial Respiration 2 problem.

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306 305
homology (i.e. higher diversity) than expressed genotypes for every
epigenetic treatment, thus demonstrating that genetic drift is in-
deed occurring in inactive sections of programs. For instance, we
measured H for the Bacterial Respiration problem (state 2) for each
treatment, the results of which are shown in Fig. 11. Homology in
the expressed genome is more or less equivalent for all treatments.
Despite having similar expressed genetic homologies, we find that
behavioral similarity increases more quickly with the hill climbing
methods (EHC1, EHC5, EHC10) than with Base, Ep0 or Ep1M, as
shown in Fig. 12. To understand why the EHC methods converge
the quickest semantically, recall that these methods only preserve
epigenetic mutations that improve semantics, and are therefore
more greedy than the other methods. Since the best methods for
this problem converge on Similar Behavior the quickest, it appears
that greedy topological search afforded by the EHC methods is an
important factor in creating the improvements noted in our
experiments. From the perspective of search, Figs. 11 and 12 imply
that the EHC systems are exploiting neutral variation in the gen-
ome as well as improved reachability in the genotype-phenotype
mapping provided by epigenetics, since H remains flat while Si-
milar Behavior increases. Neutral variation is a property known to
benefit other GP methods as well (Turner and Miller, 2015). In
other words, the epigenetic systems converge on model behavior
more quickly while preserving genetic diversity in the search
space.

It is important to note that the smoothness of the fitness
landscape of a problem will play a role in determining whether
greedy methods like EHC are the best option. For example, we
studied several program synthesis problems for which Ep1M
provided better performance (La Cava et al., 2015). This could be
due to rugged and/or deceptive fitness landscapes. Given that the
EHC methods work best for the dynamic systems studied in this
paper, it is likely that the fitness landscapes are less deceptive than
those for program synthesis. It is also likely that similar systems in
this domain have similar properties, and they should therefore
benefit from the EHC variants of ELGP as well.
7. Conclusions

The results suggest that epigenetic local search is a significant
addition to GP. We find that epigenetic methods, especially EHC
methods, outperform a baseline implementation of GP in terms of
fitness minimization, exact solutions, and equation intelligibility on
textbook nonlinear ODE systems and randomly generated dynamic
systems. Furthermore we show in comparison to other nonlinear
approaches that ELGP is able to return concise and accurate models
in three real-world applications. Our study of population diversity
suggests that this performance improvement to GP is achieved by
the epigenetic layer's ability to preserve diversity in the inactive
sequences of genes while converging more quickly in semantic
space. Although we have only considered epigenetic learning by
mutation and hill climbing here, the results encourage further re-
search into the use of epigenetic methods for structure optimization
in GP, and motivate a focus on methods that improve the ability of
GP to search equation topologies, in addition to constants.
Acknowledgments

We thank Nicholas McPhee and the Hampshire Computational
Intelligence lab for helping improve this paper. This work is par-
tially supported by the NSF-sponsored IGERT: Offshore Wind En-
ergy Engineering, Environmental Science, and Policy (Grant no.
1068864), as well as Grant nos. 1017817, 1129139, and 1331283.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this publication are those of the authors and do not
necessarily reflect the views of the National Science Foundation.
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation Grant no. ACI-1053575 (Towns et al., 2014).
References

Arnaldo, I., Krawiec, K., O'Reilly, U.-M., 2014. Multiple regression genetic pro-
gramming. In: Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation, ACM Press, pp. 879–886.

Banzhaf, W., 1994. Genotype-phenotype-mapping and neutral variation – a case
study in genetic programming. In: Parallel Problem Solving from Nature (PPSN)
III, Springer, pp. 322–332.

Billings, S.A., 2013. Nonlinear System Identification: NARMAX Methods in the Time,
Frequency, and Spatio-temporal Domains. John Wiley & Sons.

Bongard, J., Lipson, H., 2007. Automated reverse engineering of nonlinear

http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref1
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref2

W. La Cava et al. / Engineering Applications of Artificial Intelligence 55 (2016) 292–306306
dynamical systems. Proc. Natl. Acad. Sci. 104 (24), 9943–9948.
Brameier, M., Banzhaf, W., 2007. Linear Genetic Programming, vol. 1. Springer,

1 edition.
Cao, H., Kang, L., Chen, Y., Yu, J., 2000. Evolutionary modeling of systems of ordinary

differential equations with genetic programming. Genet. Program. Evol. Mach.
1 (4), 309–337.

Chen, S., Billings, S.A., Luo, W., 1989. Orthogonal least squares methods and their
application to non-linear system identification. Int. J. Control 50 (5), 1873–1896.

Cornforth, T.W., Lipson, H., 2013. Inference of hidden variables in systems of dif-
ferential equations with genetic programming. Genet Program Evol. Mach. 14
(2), 155–190.

Deb, K., Agrawal, S., Pratap, A., Meyarivan, T., 2000. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: NSGA-II. In:
Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-
P. (Eds.), Parallel Problem Solving from Nature PPSN VI 1917. Springer, Berlin,
Heidelberg, pp. 849–858.

Dias, B.G., Ressler, K.J., 2013. PACAP and the PAC1 receptor in post-traumatic stress
disorder. Neuropsychopharmacology 38 (1), 245–246.

Dias, B.G., Ressler, K.J., 2014. Parental olfactory experience influences behavior and
neural structure in subsequent generations. Nat. Neurosci. 17 (1), 89–96.

Ferreira, C., 2001. Gene expression programming: a new adaptive algorithm for
solving problems. Complex Syst. 13 (2), 87–129 arXiv:cs/0102027.

Fleming, P., Van Wingerden, J.-W., Wright, A.D., 2011. Comparing State-space
Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-
coupled Modes on Wind Turbines through Field-testing: Preprint. National
Renewable Energy Laboratory, National Wind Technology Center.

Fontana, A., 2011. Epigenetic tracking. In: Kampis, G., Karsai, I., Szathmáry, E.
(Eds.), Advances in Artificial Life, Darwin Meets von Neumann, number 5777 in
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 10–17.

Giraud-Carrier, C., 2002. Unifying learning with evolution through Baldwinian
evolution and Lamarckism. In: Advances in Computational Intelligence and
Learning, Springer, pp. 159–168.

Gray, G.J., Murray-Smith, D.J., Li, Y., Sharman, K.C., Weinbrenner, T., 1998. Nonlinear
model structure identification using genetic programming. Control Eng. Pract. 6
(11), 1341–1352.

Gregorčič, G., Lightbody, G., 2008. Nonlinear system identification: from multiple-
model networks to Gaussian processes. Eng. Appl. Artif. Intell. 21 (7),
1035–1055.

Gruau, F., Whitley, D., 1993. Adding learning to the cellular development of neural
networks: evolution and the Baldwin effect. Evolut. Comput. 1 (3), 213–233.

Haber, R., Unbehauen, H., 1990. Structure identification of nonlinear dynamic sys-
tems—a survey on input/output approaches. Automatica 26 (4), 651–677.

Holliday, R., 2006. Epigenetics: a historical overview. Epigenetics 1 (2), 76–80.
Iba, H., Sato, T., 1994. Genetic Programming with Local Hill-Climbing. Technical

Report ETL-TR-94-4, Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-city,
Ibaraki, Japan, vol. 305.

Jablonka, E., Lamb, M.J., 2002. The changing concept of epigenetics. Ann. N.Y. Acad.
Sci. 981 (1), 82–96.

Jeong, I.-K., Lee, J.-J., 1996. Adaptive simulated annealing genetic algorithm for
system identification. Eng. Appl. Artif. Intell. 9 (5), 523–532.

Kaati, G., Bygren, L.O., Edvinsson, S., 2002. Cardiovascular and diabetes mortality
determined by nutrition during parents' and grandparents' slow growth period.
Eur. J. Human. Genet. 10 (11), 682.

Keijzer, M., 2003. Improving symbolic regression with interval arithmetic and lin-
ear scaling. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (Eds.),
Genetic Programming, number 2610 in Lecture Notes in Computer Science-
Springer, Berlin, Heidelberg, pp. 70–82.

Keijzer, M., 2013. Push-forth: a light-weight, strongly-typed, stack-based genetic
programming language. In: Proceedings of the 15th Annual Conference Com-
panion on Genetic and Evolutionary Computation, GECCO '13 Companion, ACM,
New York, NY, USA, pp. 1635–1640.

Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M., Wagner, S., 2013. Effects
of constant optimization by nonlinear least squares minimization in symbolic
regression. In: Blum, C., Alba, E., Bartz-Beielstein, T., Loiacono, D., Luna, F.,
Mehnen, J., Ochoa, G., Preuss, M., Tantar, E., Vanneschi, L. (Eds.), GECCO '13
Companion: Proceeding of the Fifteenth Annual Conference Companion on
Genetic and Evolutionary Computation Conference Companion. ACM, Am-
sterdam, The Netherlands, pp. 1121–1128.

Kommenda, M., Kronberger, G., Affenzeller, M., Winkler, S.M., Burlacu, B., 2015.
Evolving simple symbolic regression models by multi-objective genetic pro-
gramming. In: Genetic Programming Theory and Practice, vol. XIV Genetic and
Evolutionary Computation. Springer, Ann Arbor, MI.

Koza, J.R., 1992. Genetic Programming: on the Programming of Computers by
Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., Dunlap, F., 1997. Automated
synthesis of analog electrical circuits by means of genetic programming. IEEE
Trans. Evolut. Comput. 1 (2), 109–128.

La Cava, W., Danai, K., Spector, L., Fleming, P., Wright, A., Lackner, M., 2015. Auto-
matic identification of wind turbine models using evolutionary multiobjective
optimization. Renew. Energy.

La Cava, W.G., Danai, K., 2015. Gradient-based adaptation of continuous dynamic
model structures. Int. J. Syst. Sci., 1–15.

La Cava, W., Helmuth, T., Spector, L., Danai, K., 2015. Genetic programming with
epigenetic local search. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO), ACM Press, pp. 1055–1062.

La Cava, W., Spector, L., Danai, K., Lackner, M., 2014. Evolving differential equations
with developmental linear genetic programming and epigenetic hill climbing.
In: Companion Proceedings of the 2014 Conference on Genetic and Evolu-
tionary Computation (GECCO), ACM Press, pp. 141–142.

Langdon, W.B., 2012. Genetic Programming and Data Structures: Genetic
ProgrammingþData Structures¼Automatic Programming!, Springer Science &
Business Media, vol. 1.

Ljung, L., 1999. System Identification: Theory for the User, 2nd ed., Prentice Hall,
vol. 1.

Ljung, L., 2007. System Identification Toolbox for Use with MATLABs.
Madar, J., Abonyi, J., Szeifert, F., 2004. Genetic programming for system identifica-

tion. In: Intelligent Systems Design and Applications (ISDA 2004) Conference,
Budapest, Hungary.

Miller, J.F., Thomson, P., 2000. Cartesian genetic programming. In: Genetic Pro-
gramming. Springer, pp. 121–132.

Narendra, K.S., Parthasarathy, K., 1990. Identification and control of dynamical
systems using neural networks. IEEE Trans. Neural Netw. 1 (1), 4–27.

Ni, X., Verhaegen, M., Krijgsman, A.J., Verbruggen, H.B., 1996. A new method for
identification and control of nonlinear dynamic systems. Eng. Appl. Artif. Intell.
9 (3), 231–243.

Nordin, P., Francone, F., Banzhaf, W., 1995. Explicitly defined Introns and destructive
crossover in genetic programming. In: Rosca, J.P. (Ed.), Proceedings of the
Workshop on Genetic Programming: from Theory to Real-World Applications,
Tahoe City, California, USA, pp. 6–22.

Perkis, T., 1994. Stack-based genetic programming. In: Evolutionary Computation,
1994. IEEE World Congress on Computational Intelligence, Proceedings of the
First IEEE Conference on. IEEE, pp. 148–153.

Rodriguez-Vazquez, K., Fonseca, C.M., Fleming, P.J., 2004. Identifying the structure
of nonlinear dynamic systems using multiobjective genetic programming. IEEE
Trans. Syst. Man, Cybern. - Part A: Syst. Hum. 34 (4), 531–545.

Rodríguez-Vázquez, K., Fleming, P.J., 2004. Evolution of mathematical models of
chaotic systems based on multiobjective genetic programming. Knowl. Inf. Syst.
8 (2), 235–256.

Ross, B.J., 1999. A Lamarckian evolution strategy for genetic algorithms. Pr. Handb.
Genet. Algorithms: Complex Coding Syst. 3, 1–16.

Sadollah, A., Eskandar, H., Yoo, D.G., Kim, J.H., 2015. Approximate solving of non-
linear ordinary differential equations using least square weight function and
metaheuristic algorithms. Eng. Appl. Artif. Intell. 40, 117–132.

Schmidt, M., Lipson, H., 2009. Distilling free-form natural laws from experimental
data. Science 324 (5923), 81–85.

Schmidt, M., Lipson, H., 2007. Comparison of tree and graph encodings as function
of problem complexity. In: Proceedings of the 9th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO '07, ACM, New York, NY, USA, pp.
1674–1679.

Schmidt, M., Lipson, H., 2011. Age-fitness pareto optimization. In: Genetic Pro-
gramming Theory and Practice VIII, Springer, pp. 129–146.

Schmidt, M.D., 2011. Machine Science: Automated Modeling of Deterministic and
Stochastic Dynamical Systems (Ph.D. thesis). Cornell University, Ithaca, NY, USA,
AAI3484909.

Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. CRC
Press, vol. 26.

Smits, G.F., Kotanchek, M., 2005. Pareto-front exploitation in symbolic regression.
In: Genetic Programming Theory and Practice II, Springer, pp. 283–299.

Spector, L., Robinson, A., 2002. Genetic programming and autoconstructive evolu-
tion with the push programming language. Genet. Program. Evol. Mach. 3 (1),
7–40.

Spector, L., Helmuth, T., 2013. Uniform linear transformation with repair and al-
ternation in genetic programming. Genetic Programming Theory and Practice
XI, page In preparation, Springer.

Strogatz, S.H., 2014. Nonlinear Dynamics and Chaos: with Applications to Physics,
Biology, Chemistry, and Engineering. Westview Press.

Tanev, I., Yuta, K., 2008. Epigenetic programming: genetic programming in-
corporating epigenetic learning through modification of histones. Inf. Sci. 178
(23), 4469–4481.

Topchy, A., Punch, W.F., 2001. Faster genetic programming based on local gradient
search of numeric leaf values. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pp. 155–162.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V.,
Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J.R., Wilkens-Diehr, N.,
2014. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16 (5), 62–74.

Turner, A.J., Miller, J.F., 2015. Neutral genetic drift: an investigation using Cartesian
genetic programming. Genet Program Evol. Mach., 1–28.

Turner, B.M., 2000. Histone acetylation and an epigenetic code. Bioessays 22 (9),
836–845.

Vladislavleva, E., Smits, G., den Hertog, D., 2009. Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via Pareto genetic
programming. IEEE Trans. Evolut. Comput. 13 (2), 333–349.

Whitley, D., Gordon, V.S., Mathias, K., 1994. Lamarckian evolution, the Baldwin ef-
fect and function optimization. In: Parallel Problem Solving from Nature (PPSN)
III, Springer, pp. 5–15.

Wigren, T., 2006. Recursive prediction error identification and scaling of non-linear
state space models using a restricted black box parameterization. Automatica
42 (1), 159–168.

Wigren, T., 2010. Input-output data sets for development and benchmarking in
nonlinear identification. Technical Reports from the Department of Information
Technology, 20:2010–020, 2010. Data sets available: 〈http://www.it.uu.se/re
search/publications/reports/2010-020/NonlinearData.zip〉.

Wigren, T., Schoukens, J., 2013. Three free data sets for development and bench-
marking in nonlinear system identification. In: Proc. 2013 Eur. Control Conf.
(ECC2013), pp. 17–19.

Wu, A.S., Lindsay, R.K., 1995. Empirical studies of the genetic algorithm with non-
coding segments. Evolut. Comput. 3 (2), 121–147.

Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: improving the strength Pareto
evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH),
Institut für Technische Informatik und Kommunikationsnetze (TIK).

http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref2
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref2
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref3
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref3
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref3
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref3
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref4
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref5
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref5
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref5
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref5
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref6
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref7
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref7
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref7
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref8
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref8
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref8
http://arxiv:cs/0102027
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref10
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref10
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref10
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref10
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref11
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref12
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref12
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref12
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref13
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref14
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref14
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref15
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref15
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref15
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref16
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref17
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref17
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref17
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref18
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref18
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref18
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref18
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref18
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref19
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref20
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref20
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref21
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref21
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref21
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref21
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref22
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref22
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref22
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref23
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref24
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref25
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref25
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref25
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref25
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref26
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref26
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref26
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref26
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref27
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref27
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref27
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref27
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref28
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref28
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref28
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref29
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref29
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref29
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref29
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref30
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref30
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref30
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref31
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref31
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref31
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref31
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref32
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref32
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref33
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref33
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref33
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref33
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref34
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref34
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref34
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref34
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref35
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref35
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref35
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref36
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref36
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref36
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref37
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref37
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref37
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref37
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref38
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref38
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref38
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref38
http://www.it.uu.se/research/publications/reports/2010-020/NonlinearData.zip
http://www.it.uu.se/research/publications/reports/2010-020/NonlinearData.zip
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref39
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref39
http://refhub.elsevier.com/S0952-1976(16)30129-4/sbref39

	Inference of compact nonlinear dynamic models by epigenetic local search
	Introduction
	Problem statement
	Epigenetic Linear Genetic Programming (ELGP)
	GP representation
	Epigenetic learning and evolution
	Epigenetic mutation
	Epigenetic hill climbing
	Epigenetic inheritance

	Related work
	Experimental methods
	Evolutionary algorithm
	Optimizations
	Problems
	Textbook ODE problems
	ODE suite
	Real-world applications

	Results and discussion
	Textbook ODE problems
	ODE suite
	Real-world benchmark system
	Industrial processes
	Population diversity

	Conclusions
	Acknowledgments
	References

