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A B S T R A C T

Feature selection plays a critical role in biomedical data mining, driven by increasing feature dimensionality in
target problems and growing interest in advanced but computationally expensive methodologies able to model
complex associations. Specifically, there is a need for feature selection methods that are computationally effi-
cient, yet sensitive to complex patterns of association, e.g. interactions, so that informative features are not
mistakenly eliminated prior to downstream modeling. This paper focuses on Relief-based algorithms (RBAs), a
unique family of filter-style feature selection algorithms that have gained appeal by striking an effective balance
between these objectives while flexibly adapting to various data characteristics, e.g. classification vs. regression.
First, this work broadly examines types of feature selection and defines RBAs within that context. Next, we
introduce the original Relief algorithm and associated concepts, emphasizing the intuition behind how it works,
how feature weights generated by the algorithm can be interpreted, and why it is sensitive to feature interactions
without evaluating combinations of features. Lastly, we include an expansive review of RBA methodological
research beyond Relief and its popular descendant, ReliefF. In particular, we characterize branches of RBA
research, and provide comparative summaries of RBA algorithms including contributions, strategies, function-
ality, time complexity, adaptation to key data characteristics, and software availability.

1. Background

The fundamental challenge of almost any data mining or modeling
task is to identify and characterize relationships between one or more
features in the data (also known as predictors or attributes) and some
endpoint (also known as the dependent variable, class, outcome, phe-
notype, or concept). In most datasets, only a subset of available features
are relevant features, i.e. informative in determining the endpoint value.
The remaining irrelevant features, which are rarely distinguishable a
priori in real world problems, are not informative yet contribute to the
overall dimensionality of the problem space. This increases the diffi-
culty and computational burden placed on modeling methods. Feature
selection could generically be defined as the process of identifying re-
levant features and discarding irrelevant ones.

Fig. 1 illustrates the typical stages of a data mining analysis pipe-
line. Specifically, raw data is preprocessed in preparation for analysis.
This typically includes some type of cross validation where the data is
split into training, validation, and testing subsets to avoid overfitting
and assess the generalizability of the final model. Next, different feature
processing approaches can be employed to remove irrelevant features
or construct better relevant ones. Modeling then takes place on this

preprocessed data. Model performance could then feed back into an-
other round of feature processing (dotted line). This is the case for
wrapper feature selection methods, reviewed below. The final model is
ultimately assessed and interpreted in a post analysis stage that ideally
leads to the discovery of useful knowledge. Feature selection is an im-
portant part of a successful data mining pipeline, particularly in pro-
blems with very large feature spaces. Poorly performed feature selec-
tion can have significant downstream consequences on data mining,
particularly when relevant features have been mistaken as irrelevant
and removed from consideration.

1.1. Types of feature selection

A large variety of feature selection methodologies have been pro-
posed and research continues to support the claim that there is no
universal “best” method for all tasks [12]. In order to navigate meth-
odological options and assist in selecting a suitable method for a given
task it is useful to start by characterizing and categorizing different
feature selection methods [23,79,12,51]. One such characterization is
with regards to the feature selection objective.
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1. Idealized: find the minimally sized feature subset that is necessary
and sufficient to describe the target concept [53].

2. Target Feature Count: select a subset of m features from a total set of n
features, m < n, such that the value of a criterion function is op-
timized over all subsets of size m [78].

3. Prediction Accuracy Improvement: choose a subset of features that
best increases prediction accuracy or decreases model complexity
without significantly decreasing the prediction accuracy [48].

4. Approximate Original Class Prediction Probability Distribution: for
classification problems, select a feature subset that yields a class
prediction probability distribution that is as close as possible to the
class prediction probability distribution given all features. In con-
trast with prediction accuracy this perspective seeks to preserve
additional information regarding probabilities of class predictions
[56].

5. Rank and Define Cutoff: first rank all features using some surrogate
measure of feature ‘value’, then define the feature subset by ap-
plying an ad-hoc cutoff. This cutoff may be determined by statistical
or subjective likelihood of relevance or simply a desired number of
features in the subset [52].

This list is an updated version of one regularly used in the literature
[23,75,107,36]. Alternatively, feature selection methods can be dis-
tinguished based on their relationship with the construction of the
model (i.e. induction) [95,12,18,107,51,75].

1. Filter Methods: use a ‘proxy measure’ calculated from the general
characteristics of the training data to score features or feature subsets
as a processing step prior to modeling. Filters are generally much
faster and function independently of the induction algorithm, meaning
that selected features can then be passed to any modeling algorithm.
Filter methods can be roughly classified further by the filtering mea-
sures they employ, i.e. information, distance, dependence, con-
sistency, similarity, and statistical measures [23,12,51]. Examples
include information gain [46], chi-square [50], and Relief [53].

2. Wrapper Methods: employ any stand-alone modeling algorithm to
train a predictive model using a candidate feature subset. The
testing performance on a hold-out set is typically used to score the
feature set. Alternatively in a modeling algorithm like a random
forest, estimated feature importance scores can be applied to select a
feature subset [72]. In any wrapper method, a new model must be
trained to test any subsequent feature subset, therefore wrapper
methods are typically iterative and computationally intensive, but
can identify the best performing features set for that specific mod-
eling algorithm [42,12,51]. Each iteration of the wrapper, the fea-
ture subset is generated based on the selected search strategy, e.g.

forward or backward selection [54,63] or a heuristic feature subset
selection [114,44]. Examples include wrappers for Naïve Bayes
[22], Support Vector Machines (SVM) [13], and most any modeling
algorithm combined with a feature subset generation approach.
Thus a wrapper method is defined by both the selected induction
algorithm as well as the feature subset search strategy. However,
due to the computational complexity of wrappers, only the simplest
modeling methods can be used efficiently.

3. Embedded Methods: perform feature selection as a part of the mod-
eling algorithm’s execution. These methods tend to be more compu-
tationally efficient than wrappers because they simultaneously in-
tegrate modeling with feature selection. This can be done, for
instance, by optimizing a two-part objective function with (1) a
goodness-of-fit term and (2) a penalty for a larger number of features.
As with wrappers, the features selected by embedded methods are
induction algorithm dependent [42,12,51]. Examples include Lasso
[108], Elastic Net [125], and various decision tree based algorithms,
e.g. CART [14], C4.5 [85], and most recently, XGBoost [20].

Many hybrid methods have also been proposed that seek to combine
the advantages of wrappers and filters [51].

Lastly, feature selection approaches have also been broadly cate-
gorized as relying on either individual evaluation or subset evaluation
[119,12]. Individual evaluation (i.e. feature weighting/ranking) as-
sesses individual features and assigns them weights/scores according to
their degrees of relevance [11,119]. Subset evaluation instead assesses
candidate feature subsets that are selected based on a given search
strategy [12]. Filter, wrapper, or embedded methods can be either
subset or individual evaluation methods.

The remainder of this paper will focus on the family of Relief-based
feature selection methods referred to here as Relief-Based Algorithms
(RBAs) that can be characterized as individual evaluation filter methods.
For reviews of features selection methods in general, we refer readers to
[63,23,42,5,12,107,18,51,75].

1.2. Why focus on Relief-based feature selection?

One advantage of certain wrapper or embedded methods is that by
relying on subset evaluation they have the potential to capture feature
dependencies in predicting the endpoint, i.e. interactions [12]. In
contrast, very few filter methods, besides for example, FOCUS [3] and
INTERACT [123] that are notably subset evaluation filters, claim to be
able to handle feature interactions. The most reliable but naive ap-
proach for identifying feature interactions is to exhaustively search over
all subsets of the given feature set, e.g. FOCUS. This quickly becomes
computationally intractable in problems with larger feature spaces. The
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inefficiency of these approaches is that they must explicitly search
through combinations of features. Alternatively, the Relief algorithm
and its derivatives are, to the best of our knowledge, the only individual
evaluation filter algorithms capable of detecting feature dependencies.
These algorithms do not search through feature combinations, but ra-
ther use the concept of nearest neighbors to derive feature statistics that
indirectly account for interactions. Furthermore, RBAs retain the gen-
eralized advantages of filter algorithms, i.e. they are relatively fast
(with an asymptotic time complexity of instances features( · )2O ), and the
selected features are not induction algorithm dependent. The ability to
confidently utilize selected features with different induction algorithms
may save further downstream computational effort when applying
more than a single modeling technique. This is important in the context
of (1) the ‘no-free lunch’ theorem proposed by Wolpert and Macready
[116] that suggests that no single modeling algorithm can be optimal
for all problems, and (2) the widely acknowledged value of ensemble
methods reviewed by Rokach [93] that combine input from multiple
statistical or machine learning induction methods to make the best
informed predictions. Lastly, individual evaluation approaches, in-
cluding RBAs, offer a greater flexibility of use. Specifically, individual
feature weights may be applied not only to select ‘top’ features, but can
also be applied as expert knowledge to guide stochastic machine
learning algorithms such as evolutionary algorithms [111]. Further-
more, when selecting features, feature sets of different sizes can be
selected based on whatever criteria is desired for feature inclusion from
a ranked feature list.

The following two subsections address important considerations
related to our assertion that RBAs deserve particular attention. A closer
look at the strengths and weaknesses of the Relief algorithm is given in
Section 2.1.1.

1.2.1. Feature construction
An alternative or supplemental approach to facilitate the detection

and modeling of interactions is to apply feature construction (see Fig. 1),
also known as constructive induction or feature extraction. Feature
construction methods, e.g. principle component analysis or linear dis-
criminant analysis [68], define new features as a function of two or more
other features [74]. This subset of constructed features can be added to
the original feature space, or analyzed in its place (achieving di-
mensionality reduction). A common side effect of most any feature
construction method is that the original features are no longer re-
cognizable, leading to challenges in downstream model interpretability.

One feature construction method geared specifically towards cap-
turing feature interactions is multifactor dimensionality reduction
(MDR) [87]. Another more general example is polynomial feature
construction that is able to detect multiplicative interactions [106].
These approaches attempt to combine individual features that may be
interacting and construct a single feature that can be more easily
identified as relevant using any simple feature selection or induction
method. There are many possible feature construction approaches to
chose from and some can be quite computationally expensive. Notably,
applying feature construction does not necessarily preclude the need for
feature selection. Thus, assuming that a feature selection and modeling
approach has been chosen that is sensitive to a target interaction di-
mensionality (e.g. 2-way or 3-way), it may be most efficient to skip
feature construction, particularly if downstream model interpretation is
critical. While feature construction certainly has its own utility, further
discussion is outside the scope of this review.

1.2.2. Redundancy
Relevant features can be more restrictively defined as any feature

that is neither irrelevant nor redundant to the target concept [56,23].
Feature redundancy is explored further by Yu and Liu [119]. Some
feature selection methods seek to remove redundant features while
others do not. Caution should be used when removing presumably re-
dundant features, because unless two features are perfectly correlated

(i.e. truly redundant) there may still be information to be gained from
including them both [42]. One repeatedly noted drawback of RBAs is
that they do not remove feature redundancies, i.e. they seek to select all
features relevant to the endpoint regardless of whether some features
are strongly correlated with others [53,5,35]. However, except for
features that are perfectly correlated, it is not always clear whether
useful information is being lost when ‘redundant’ features are removed.
For example, it has been suggested that preserving redundant features
can be a benefit, as it “may point to meaningful clusters of correlated
phenotypes” [109]. If removing redundancy is clearly important to
success in a given problem domain, many effective methods are avail-
able that can be applied before, after, or integrated with RBA feature
selection to remove feature redundancies [8,35,117,102,17,1,67,40].

1.3. Paper summary

In the text that follows, we (1) introduce RBAs from the perspective
of the original Relief algorithm noting key concepts and intuitions, (2)
examine the contributions of the landmark ReliefF algorithm, (3) dif-
ferentiate thematically distinct branches of RBA research, (4) review
methodological expansions and advancements introduced by derivative
members of the RBA family in the wake of Relief and ReliefF, (5)
consider RBA evaluations, and (6) summarize software availability.
This review was prepared to complement a comprehensive research
comparison of ‘core’ RBAs presented by Urbanowicz et al. [113].

2. Introduction to Relief

In this section we provide algorithmic and conceptual descriptions
of the original Relief algorithm relevant to understanding all members
of the RBA family.

2.1. Relief

Kira and Rendell [53,52] formulated the original Relief algorithm
inspired by instance-based learning [2,16]. As an individual evaluation
filtering feature selection method, Relief calculates a proxy statistic for
each feature that can be used to estimate feature ‘quality’ or ‘relevance’
to the target concept (i.e. predicting endpoint value). These feature
statistics are referred to as feature weights ( =W A[ ] weight of feature
‘A’), or more casually as feature ‘scores’ that can range from −1 (worst)
to + 1 (best). Notably, the original Relief algorithm was limited to
binary classification problems, and had no mechanism to handle
missing data. Strategies to extend Relief to multi-class or continuous
endpoint problems are not detailed here, but are described in the re-
spective works cited in the review section of this paper.

Algorithm 1. Pseudo-code for the original Relief algorithm

Require: for each training instance a vector of feature values and
the class value
←n number of training instances
←a number of features (i.e. attributes)

Parameter: ←m number of random training instances out of n
used to update W

initialize all feature weights ≔W A[ ] 0.0
for i≔1 to m do

randomly select a ‘target’ instance Ri
find a nearest hit ‘H’ and nearest miss ‘M’ (instances)
for A≔ 1 to a do

≔ − +W A W A diff A R H m diff A R M m[ ] [ ] ( , , )/ ( , , )/i i

end for
end for
return the vector W of feature scores that estimate the quality of
features
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As summarized by the pseudo-code in Algorithm 1, the Relief al-
gorithm cycles through m random training instances (Ri), selected
without replacement, where m is a user-defined parameter. Each cycle,
Ri is the ‘target’ instance and the feature score vector W is updated
based on feature value differences observed between the target and
neighboring instances. Therefore each cycle, the distance between the
‘target’ instance and all other instances is calculated. Relief identifies
two nearest neighbor instances of the target; one with the same class,
called the nearest hit (H) and the other with the opposite class, called the
nearest miss (M). The last step of the cycle updates the weight of a
feature A in W if the feature value differs between the target instance Ri
and either the nearest hit H or the nearest miss M (see Fig. 2). Features
that have a different value between Ri and M support the hypothesis
that they are informative of outcome, so the quality estimation W[A] is
increased. Conversely, features with differences between Ri and H
provide evidence to the contrary, so the quality estimation W[A] is
decreased. The diff function in Algorithm 1 calculates the difference in
value of feature A between two instances I1 and I2, where =I Ri1 and I2

is either H or M, when performing weight updates [90]. For discrete
(e.g. categorical or nominal) features, diff is defined as:

= ⎧
⎨⎩

=diff A I I value A I value A I
otherwise

( , , ) 0 if ( , ) ( , )
1 if1 2

1 2

(1)

and for continuous (e.g. ordinal or numerical) features, diff is defined
as:

= −
−

diff A I I value A I value A I
max A min A

( , , ) | ( , ) ( , )|
( ) ( )1 2

1 2

(2)

The maximum and minimum values of A are determined over the entire
set of instances. This normalization ensures that weight updates fall
between 0 and 1 for both discrete and continuous features. Ad-
ditionally, in updating W[A], dividing the output of diff by m guaran-
tees that all final weights will be normalized within the interval −[ 1, 1].

The diff function is also used to calculate the distance between in-
stances when finding nearest neighbors. The total distance is simply the
sum of diff distances over all attributes (i.e. Manhattan distance).
Technically, the original Relief algorithm used Euclidian distance rather
than Manhattan distance i.e. the diff terms were squared during in-
stance distance measurements and feature weighting. However, ex-
periments by [62] indicated no significant difference between results
using diff or squared diff, thus the simplified description of the Relief
algorithm has become standard. It has also been suggested that any
valid distance metric could be used by Relief [109]. Thus, determining
the best distance metric remains an open research question. While the

above diff function performs well when features are either uniformly
discrete or continuous, it has been noted that given a dataset with a mix
of discrete and continuous features, this diff function can underestimate
the quality of the continuous features [61]. One proposed solution to
this problem is a ramp function that naively assigns a full diff of 0 or 1 if
continuous feature values are some user defined minimum or maximum
value apart from one another, respectively, and a function of the dis-
tance from these boundaries otherwise [45,91,61]. However since this
approach adds two additional user-defined parameters requiring pro-
blem dependent optimization, it may be challenging to apply in prac-
tice.

2.1.1. Strengths and limitations
Regarding strengths, Relief has been presented as being both non-

myopic [61], i.e. it estimates the quality of a given feature in the
context of other features, and non-parametric [109], i.e. it makes no
assumptions regarding the population distribution or sample size. The
efficiency of the algorithm has been attributed to the fact that it doesn’t
explicitly explore feature subsets and because it does not bother trying
to identify an optimal minimum feature subset size [53]. Instead, Relief
was originally “intended as a screener to identify a subset of features
that may not be the smallest and may still include some irrelevant and
redundant features, but that is small enough to use with more refined
approaches in a detailed analysis” [109]. Consider that an exhaustive
search for interactions between all feature pairs alone would have a
time complexity of (2 )aO , while Relief boasts a time complexity of

a m n( · · )O , or a n( · )O whenever <m n. Furthermore, it has been sug-
gested that Relief could be viewed as an anytime algorithm, i.e. one that
can be stopped and yield results at any time, but it is presumed that
with more time or data it will improve the results [91].

Regarding limitations, the original Relief analysis suggests that the
algorithm can be fooled by insufficient training cycles (i.e. not a large
enough m). The original paper also suggests that Relief is fairly noise-
tolerant and unaffected by feature interactions. However, later work
identified that Relief was susceptible to noise interfering with the se-
lection of nearest neighbors [58]. Further, research into RBAs has, until
recently, been limited to considering 2-way feature interactions only.
Therefore, it was unclear if RBAs could detect feature interactions with
a dimensionality beyond 2 features. Research paired with this review
suggests that only specific RBAs have the ability to detect higher order
interactions (e.g. 3-way, 4-way, and 5-way), thus RBAs are only uni-
versally reliable in detecting 2-way interactions [113]. Relief has also
been noted to have a reduced power to identify relevant non-monotonic
features (e.g. features with a Gaussian distribution) [9]. Most im-
portantly, it has been repeatedly demonstrated empirically and theo-
retically that core RBA performance deteriorates as the number of ir-
relevant features becomes ‘large’ [91,77,33,109]. This deterioration of
performance in identifying interacting features is primarily due to the
fact that Relief’s computation of neighbors and weights becomes in-
creasingly random as the number of features increases. This is an ex-
ample of the curse of dimensionality. The iterative RBAs reviewed in
Section 3.4 have been demonstrated to improve RBA performance in
these types of large feature spaces. Differently, deteriorating perfor-
mance in detecting main effects in very large feature spaces is primarily
due to feature scores being based on feature value differences between a
subset of neighboring instances, rather than differences from all in-
stances. Thus the main effect signal in RBA scores is not expected to be
as pronounced. Given a very large feature space, this less pronounced
main effect feature score is less likely to stand out. In general, it is likely
that myopic feature selection algorithms that compute scores by com-
paring the feature values of all training instances will have the most
power to detect simple main effects [71]. In addition to an iterative
RBA approach, another way to address lost main effect performance
could involve running both an RBA and a myopic feature selection al-
gorithm, selecting the top non-redundant set of features combined from
both algorithms [115]. Unfortunately, as of yet, there are no clear

X X Y Z Z X Z X Y Y Y Y X Z Z - 0

X X Y Z Z X Z Y Y Y Y Y X X Z - 1

Target Instance (Ri)

EndpointFeatures

Nearest Miss (M)

X X Y Z Z X Z X Y Y Y Y X Z Z - 0

X X Y Z Z Y Z X Y Y Y Y X Z Z - 0

Target Instance (Ri)

W[A]-=1/m

Nearest Hit (H)

W[A]+=1/m W[A]+=1/m

Fig. 2. Relief updating W A[ ] for a given target instance when it is compared to
its nearest miss and hit. In this example, features are discrete with possible
values of X, Y, or Z, and endpoint is binary with a value of 0 or 1. Notice that
when the value of a feature is different, the corresponding feature weight in-
creases by m1/ for the nearest miss, and reduces by m1/ for the nearest hit.
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guidelines regarding the size of the feature space where (1) myopic
methods would be expected to outperform RBAs in detecting main ef-
fects, or (2) interactions effects can’t be distinguished from random
background noise. Simulations studies such as those reviewed in Sec-
tion 3.6 offer some insight, however in real-world applications many
factors are expected impact success (e.g. number of training instances,
type of signal, signal strength, feature distributions, feature type, etc.).

Lastly, it’s notable that Relief scores do not reflect the nature of an
association. For example Relief does not tell you which attributes might
be interaction partners, or whether a score is high due to a linear effect
or an interaction. This is left to downstream modeling. Furthermore,
there is no established way to assess how many of the high scoring
selected features may be false discoveries. It is possible this issue could
be addressed through permutation testing as suggested by McKinney
et al. [71].

2.2. Feature subset selection

The original description of Relief specified an automated strategy
for feature subset selection [53]. Specifically, a relevance threshold (τ)
was defined such that any feature with a relevance weight W[A]⩾ τ
would be selected. Kira and Rendell demonstrated that “statistically,
the relevance level of a relevant feature is expected to be larger than
zero and that of an irrelevant one is expected to be zero (or negative)”.
Therefore generally the threshold should be selected such that

< <τ0 1. More precisely they proposed the bounds i.e. < ⩽τ0 αm
1 ,

based on Chebyshev’s inequality, where α is the probability of ac-
cepting an irrelevant feature as relevant (i.e. making a Type I error). If τ
is set too high, there is an increased chance that one or more relevant
features will fail to be selected. Alternatively if τ is set too low, it is
expected that an increased number of irrelevant features will be se-
lected. Like any significance threshold the choice of τ is somewhat ar-
bitrary. Not all features with a weight above the selected threshold will
necessarily be relevant because it is expected that some irrelevant
features will have a positive weight by chance.

In practice, rather than choosing a value of τ , it is often more
practical to choose some number of features to be selected a priori based
on the functional, computational, or run time limitations of the
downstream modeling algorithms that will be applied. Ultimately the
goal is to provide the best chance that all relevant features are included
in the selected set for modeling, but at the same time, remove as many
of the irrelevant features as possible to facilitate modeling, reduce over-
fitting, and make the task of induction tractable.

2.3. Intuition, interpretation, and interactions

Relief algorithms often appear simple at first glance, but under-
standing how to interpret feature weights and gaining the intuition as to
how feature dependencies (i.e. interactions) can be gleaned without
explicitly considering feature subsets is not always apparent. The key
idea behind Relief is to estimate feature relevance according to how
well feature values distinguish concept (endpoint) values among in-
stances that are similar (near) to each other. Two complementary in-
terpretations of Relief feature weights have been derived and presented:
(1) a probabilistic interpretation [58,60,62,90,91] and (2) an inter-
pretation as the portion of the explained concept changes [90,91]. Next,
we summarize these interpretations and why they explain Relief’s
ability to detect interactions.

2.3.1. Probabilistic interpretation
The first interpretation is that the Relief weight estimate W[A] of

feature A is an approximation of the following difference of prob-
abilities:

=
−

W A P A
P A

[ ] (different value of | nearest instance from different class)
(different value of | nearest instance from same class)

(3)

Consider that as the number of nearest neighbors used in scoring
increases from 1 and approaches n this effectively eliminates the con-
dition that instances used in scoring be ‘near’. Notably if we were to
eliminate the ‘near’ requirement from (3), the formula becomes:

=
−

W A P A
P A

[ ] (different value of | different class)
(different value of | same class) (4)

As derived by Robnik-Šikonja and Kononenko [91] it can be shown
that, without the near condition, Relief weights would be strongly
correlated with impurity functions such as the Gini-index gain. Im-
purity functions including information gain [46], gain ratio [85], gini-
index [14], distance measure [26], j-measure [97], and MDL [59] have
often been used as myopic filter feature selection algorithms that as-
sume features to be conditionally independent given the class.

Thus, it is the ‘nearest instance’ condition in Eq. (3) and the resulting
fact that Relief weights are averaged over local estimates in smaller
parts of the instance subspace (rather than globally over all instances)
that enables Relief algorithms to take into account the context of other
features and detect interactions [62,61]. It has been demonstrated by
Robnik-Šikonja and Kononenko [91], that as the number of neighbors
used in scoring approaches n the ability of Relief to detect feature de-
pendencies disappears, since scoring is no longer limited to ‘near’ in-
stances.

2.3.2. Concept change interpretation
The second interpretation of Relief weights has been argued as

being the more comprehensible/communicable than the probabilistic
one [90]. The authors demonstrate that Relief relevance weights W[A]
can be interpreted as the ratio between the number of explained
changes in the concept and the number of examined instances. If a
particular change can be explained in multiple ways, all ways share
credit for it in the quality estimate. Also if several features are involved
in one way of the explanation, all of them get the credit in their quality
estimate [91]. To illustrate this idea, Table 1 presents a simple Boolean
problem where Class is determined by the expression ( ∧A A1 2) ∨
( ∧A A1 3), such that all three features (A A,1 2, and A3) are relevant.

In the first instance of Table 1 it can be said that A1 is responsible for
class assignment because changing its value would be the only feature
value change necessary to make =Class 0. In the second instance,
changing either A1 or A2 would make =Class 0, thus they share the
responsibility. Similar responsibility assignments can be made for in-
stances 3–7, while in instance 8, changing only one feature value isn’t
enough for Class to change, however there are two pairs of feature value
changes that can. As detailed by Robnik-Šikonja and Kononenko [91],
adding up the responsibility for each feature results in a score estimate
of 0.75 for A1, and an estimate of 0.1875 for both A2 and A3. This result
makes sense given that A1 clearly has a stronger linear association with
Class (i.e. a main effect), but both A2 and A3 contribute to a lesser ex-
tent, interacting with A1 in a subset of instances. This conceptual ex-
ample was validated empirically by Robnik-Šikonja and Kononenko
[91], finding in a dataset with these three relevant features along with
five random binary features, that the Relief relevance estimate for A1
converges near 0.75, and estimates for A2 and A3 converge near 0.1875
with an increasing number of training instances.

2.3.3. Breaking down interaction detection
To further clarify how Relief detects interactions, Table 2 offers a

simple example dataset that we will use to walk through Relief scoring.
In this example, A1 and A2 are relevant features. When they have dif-
ferent values, the =Class 1 otherwise the =Class 0. This is an example
of a ‘pure’ interaction, where no individual feature has an association
with endpoint. A3 is an irrelevant feature.
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Table 3 breaks down how scoring would proceed over 8 cycles with
each instance getting to be the respective target. For each target, we see
what instance is the nearest hit and miss, as well as what feature has a
different value between the instances (given in parentheses), and thus is
relevant to scoring. If there is a tie for nearest neighbor, both instances
are listed with their respective different valued feature. For example
when R1 is the target, its nearest hit is R2. The only feature with a dif-
ferent value between these two instances is A3. The nearest miss for R1 is
a tie between R5 and R7 that have feature value differences at A1 and A2,
respectively.

Table 4 summarizes the resulting number of nearest hit and miss
score contributions from Table 3. When there is a tie between instances
for nearest neighbor, we give each feature difference half credit since
only one can contribute at a time. We can see from Table 3 that among
nearest hits we observe no feature value differences for A1 or A2, but a
total of 8 of them for A3 across all 8 cycles. Among nearest misses, we
observe 8 feature value differences for both A1 and A2. However since it
would be only one or the other each scoring iteration they each receive
a total of 4. Lastly, the Relief scoring scheme applies negative scoring to

nearest hits, and positive scoring to nearest misses. As seen in this
simple example, Relief easily differentiate between the relevant inter-
acting features A1 and A2 (each with a final score of 4) and the irrele-
vant feature A3 (with a final score of −8).

3. A review of Relief-based algorithms

In this section, we offer a comprehensive review of the RBAs in-
spired by Relief. We highlight major research themes, advancements,
concepts, and adaptations.

3.1. ReliefF: the best known variant

The original Relief algorithm [53] is rarely applied in practice
anymore and has been supplanted by ReliefF [58] as the best known and
most utilized RBA to date. Notably, the ‘F’ in ReliefF refers to the sixth
algorithm variation (from A to F) proposed by Kononenko [58]. The
ReliefF algorithm has been detailed in a number of other publications
[60,62,91]. Here we highlight four key ways that ReliefF differs from
Relief. First, ReliefF relies on a ‘number of neighbors’ user parameter k
that specifies the use of k nearest hits and k nearest misses in the scoring
update for each target instance (rather than a single hit and miss). This
change increased weight estimate reliability, particularly in noisy pro-
blems. A k of 10 was suggested based on preliminary empirical testing
and has been widely adopted as the default setting. This algorithm
variation was originally proposed under the name ReliefA.

Second, three different strategies were proposed to handle in-
complete data (i.e. missing data values). These strategies were proposed
under the names Relief(B-D). When encountering a missing value, the
‘best’ approach (ReliefD), sets the diff function equal to the class-con-
ditional probability that two instances have different values for the
given feature. This is implicitly an interpolation approach.

Third, two different strategies were proposed to handle multi-class
endpoints. These strategies were proposed under the names ReliefE and
ReliefF. ReliefF, which inherited the changes proposed in ReliefA and
ReliefD, was selected as the ‘best’ approach. During scoring in multi-
class problems, ReliefF finds k nearest misses from each ‘other’ class,
and averages the weight update based on the prior probability of each
class. Conceptually, this encourages the algorithm to estimate the
ability of features to separate all pairs of classes regardless of which two

Table 1
Tabular dataset description of Boolean problem Class = ( ∧A A1 2) ∨ ( ∧A A1 3) including the responsibility of
each feature for yielding an expected class change. Adapted from Robnik-Šikonja and Kononenko [91].

Table 2
Example dataset with interaction between A1 and A2. A3 is irrelevant. Adapted
from [62].

Instances A1 A2 A3 Class

R1 1 0 1 1
R2 1 0 0 1
R3 0 1 1 1
R4 0 1 0 1
R5 0 0 1 0
R6 0 0 0 0
R7 1 1 1 0
R8 1 1 0 0

Table 3
Breakdown of Relief nearest neighbors (i.e. hits and misses) and corresponding
feature value differences given in parentheses when a given instance from
Table 2 is the target.

Target Nearest

Hit Miss

R1 R A( )2 3 R A R A( ), ( )5 1 7 2
R2 R A( )1 3 R A R A( ), ( )6 1 8 2
R3 R A( )4 3 R A R A( ), ( )5 2 7 1
R4 R A( )3 3 R A R A( ), ( )6 2 8 1
R5 R A( )6 3 R A R A( ), ( )1 1 3 2
R6 R A( )5 3 R A R A( ), ( )2 1 4 2
R7 R A( )8 3 R A R A( ), ( )1 2 3 1
R8 R A( )7 3 R A R A( ), ( )2 2 4 1

Table 4
Summary of score contributions in 2-way epistasis problem
yielding Relief scores.
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classes are closest to one another. Lastly, since it is expected that as the
parameter m approaches the total number of instances n, the quality of
the weight estimates becomes more reliable, Kononenko [58] proposed
the simplifying assumption that =m n. In other words, every instance
in the dataset gets to be the target instance one time (i.e. instances are
selected without replacement). We adopt this assumption in deriving
the time complexity of RBAs below. This is why the asymptotic time

complexity of ‘core’ Relief algorithms are given as n a( · )2O , rather than
m n a( · · )O .

3.2. Organizing RBA research

Following ReliefF, a number of variations and improvements have
been proposed. Table 5 chronologically organizes summary information

Table 5
Summary of key Relief-based algorithms [55,81].
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on key RBAs dealing with fundamental feature selection problems. Brief
descriptions of the algorithms and their contributions are given along
with our designation of the closest parent algorithm in parentheses.
Parent algorithms may deviate from what was described in the re-
spective publication(s). This is due to inconsistent nomenclature (e.g.
ReliefA implementations being more generically referred to as ReliefF
even if they did not include extensions for missing or multi-class data
handling) and some previously missed citations of relevant work. In the
sections following this review we will adopt the name ‘ReliefF’ for any
Relief algorithm that uses k nearest neighbors, and makes the =m n
assumption (regardless of any data type handling implementations), as
has become common in the literature [76,109].

Table 5 also provides asymptotic time complexities O (highlighted
in yellow), to easily compare run time order of magnitude. Ad-
ditionally, based on algorithmic descriptions in the respective pub-
lications, we provide approximations of complete algorithm time
complexities (highlighted in blue). These equations provide computa-
tional insight into algorithmic differences and reveal more subtle run
time differences. Variables are defined below the table. Constants in the
table are numbered (e.g. c3) according to which additive term in the
equation that it corresponds to (e.g. c na23 ). The term with c0 initializes
the feature weights to 0.0. The term with c1 calculates all unique pair-
wise distances between instances. Given the assumption of =m n, it is
computationally more efficient to pre-compute all pairwise distances
rather than on a target by target basis as proposed in the original Relief
algorithm. The term wit c2 corresponds to finding the nearest instances
(or separates nearest from furthest in the case of SURF∗ and Multi-
SURF∗). The term with c3 corresponds with updating the feature
weights. Algorithms that require additional terms label the corre-
sponding constants generically with cy or a numbered variation. Note
that complete time complexity terms that are universal to all RBAs are
represented by χ within the table.

Todorov [109] suggested that there are two primary directions of
RBA development: (1) strategies for selecting and/or weighting neigh-
bors in scoring (i.e. what we call ‘core algorithm’ developments), and
(2) strategies for moving beyond a single pass over the data to ‘iterative’
implementations. In Table 5, the column labeled ‘Focus’ identifies the
respective research direction(s) of the corresponding algorithm, going
beyond the two suggested by Todorov. These include; (1) ‘C’ for core
algorithm, i.e. variants impacting a single run through the training data
such as variations in neighbor selection or scoring, (2) ‘I’ for iterative
approach, i.e. variants designed to iteratively apply a core Relief algo-
rithm for multiple cycles through the training data, (3) ‘E’ for efficiency,
i.e. variants seeking to improve computational efficiency, and (4) ‘D’ for
data type handling, i.e. variants that seek to address the challenges of
different data types including continuous feature values, multi-class
endpoints, continuous endpoints (i.e. regression), or missing data va-
lues. The remaining columns of Table 5 indicate (with ‘X’s’) whether the
corresponding algorithm explicitly considered or implemented algo-
rithm extensions to handle any of the four data types above, beyond
discrete features and binary classes.

We can make some basic observations from this table. First, rela-
tively little attention has been paid to adapting RBAs to regression
problems. Second, the majority of proposed variations have focused on
data with discrete-valued features and a binary endpoint. Notably many
of these works have been application driven, focusing on feature se-
lection in genomics problems with single nucleotide polymorphisms
(SNPs) as features that can have one of three discrete values (0, 1, or 2)
and a binary endpoint representing sick vs. healthy subjects
[77,70,33,39,69,38,101,37]. RBAs are particularly appealing in this
domain since the number of features (a) in respective datasets is typi-
cally much larger than the number of available training instances (n),
and RBAs have a linear time complexity with respect to a, but a
quadratic time complexity with respect to n. However, core RBAs aimed
at SNP analysis, such as SURF [39], SURF∗ [38], SWRF∗ [101], and
MuliSURF∗ [37] were not originally extended to handle other basic data

types. Table 5 concludes with our recently proposed core algorithm
named MultiSURF [113]. MultiSURF performed most consistently
across a variety of problem types (e.g. 2-way and 3-way interactions as
well as heterogeneous associations) in comparison with ReliefF, SURF,
SURF∗, MultiSURF∗ and a handful of other non-RBA features selection
methods. The work by Urbanowicz et al. [113] also extended Multi-
SURF along with ReliefF, SURF, SURF∗, and MultiSURF∗ to handle a
variety of different data type issues under a unified implementation
framework called ReBATE.

The following subsections go into greater depth describing notable
RBAs that fall into our ‘core’, ‘iterative’, ‘efficiency’ or ‘data type’ ca-
tegories, as well as peripheral RBA research directions not included in
this table.

3.3. Neighbor selection and instance weighting

This section references algorithms in Table 5 with a core focus (C).
How do we select nearest hits and misses? What number of neighboring
instances should be used in feature scoring? Is there information to be
gained from considering ‘far’ instance pairs? How should the scoring
contribution of those neighboring instances be weighted; also referred
to as observation weighting by Todorov [109]? These are the primary
questions that have been asked in the context of core RBAs. Note that
instance weighting refers to the weight placed on an instance during the
scoring update. By default, most RBAs (including ReliefF) assign
neighboring instances a weight of 1, and all others a weight of 0. Fig. 3
illustrates how a variety of RBAs (arranged chronologically) differ with
respect to neighbor selection and instance weighting. For every RBA,
we assume that each instance in n gets the opportunity to be the target
instance during feature scoring. Note that for ReliefF in Fig. 3, a k of 3 is
chosen for illustration simplicity, but a k of 10 is most common. Fig. 3
includes RBAs that adopt a ‘distance-from-target’ instance weighting
scheme, i.e. Iterative Relief, I-RELIEF, and SWRF∗, where instance
weight ranges from 0 to 1. For all other RBAs in the table, instances that
are identified as either near or far, have a full weight of 1, while all
others have a zero instance weight in feature scoring. Three of the RBAs
(i.e. I-RELIEF, SURF∗, and SWRF∗) are unique in giving all instances,
besides the target, some weight each scoring cycle.

The original Relief algorithm used two nearest neighbors (i.e. one
nearest hit and miss), each with an equal instance weighting [53].
ReliefA through ReliefF used k nearest neighbors with equal instance
weighting [58]. Iterative Relief was the first to specify a radius r around
the target instance that would define the cutoff for which instances
would be considered neighbors [31]. Additionally, while RRelief [60]
was the first to suggest differentially weighting instances based on their
distance from the target instance in regression, Iterative Relief was the
first to suggest this for discrete class problems [31]. The effect there was
that the closest neighbors had a greater impact on feature weighting
than those out towards the edge of the radius. I-RELIEF proposed for-
going the determination of neighbors entirely, instead using an instance
weighting function over the entire set of hit and miss instances, again so
that the closest neighbors had the greatest impact on feature weighting
[103,102,104]. Similar to Iterative Relief, SURF employed a distance
threshold T to define instances as neighbors (where T was equal to the
average distance between all instance pairs in the data) [39]. However,
in contrast with Iterative Relief, SURF utilizes equal instance weights
for all instances defined as neighbors.

The SURF∗ expansion introduced the concept of instances that were
near vs. far from the target instance [38] (see Fig. 3). Applying the same
T from SURF, any instance within the threshold was considered near,
and those outside were far. SURF∗ was similar to I-RELIEF in that all
other instances besides the target contributed to scoring. This is re-
flected in the complete time complexity of the two algorithms where
the feature scoring term is c n a3

2 for both. However SURF∗ weights all
‘near’ instances equally, and all ‘far’ instances in a similarly equal, but
opposite way. Specifically, for far instances, feature value differences in
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hits receive a + 1 while feature value differences in misses receive a −1,
i.e. the opposite scoring strategy than what is presented in Fig. 2. Note
that in mathematics the ‘∗’ indicates opposite, therefore RBAs that
utilize ‘far’ scoring have been given this affix. Some publications have
instead have used the affix ‘STAR’ (e.g. SURFSTAR).

SWRF∗ integrated concepts from SURF∗ and I-RELIEF, preserving
the definition of near and far established in SURF∗, but adopting a
sigmoid instance weighting function from I-RELIEF so that the nearest
of neighbors have the greatest standard scoring weight, while the
farthest ‘far’ instances have the greatest opposite scoring weight.

Instances near T have the smallest scoring weights. The width of the
SWRF∗ sigmoid function is proportional to the standard deviation σ of
all pairwise instance distances. In contrast with SWRF∗, MultiSURF∗

took an alternate approach to discounting instances near T by in-
troducing a dead-band zone on both the near and far side of T (i.e. Tnear
or Tfar) [37]. Any instances that fell within this ‘middle’ distance zone
were excluded from scoring (i.e. neither near or far). Another major
difference is that MultiSURF∗ defined T as the mean pairwise distance
between the target instance and all others, as opposed to the mean of all
instance pairs in the data. This adapts the definition of near/far to a

a - dimensional space

Relief

a - dimensional space

ReliefF (k=3)

SURF

Legend

Target Instance (e.g. Class ‘    ’)

Instance with Class ‘    ’
(Zero instance weight)
Instance with Class ‘X’
(Zero instance weight)

Instance with Class ‘    ’
Nearest Neighbor(s) (Near)
Instance with Class ‘X’ 
Nearest Neighbor(s) (Near)

Instance with Class ‘    ’ 
Distant Individuals (Far)
Instance with Class ‘X’
Distant Individuals (Far)

a - dimensional space

SURF*

MultiSURF*

a - dimensional space a - dimensional space

Distance radius (r) or 
threshold (T)

Width of sigmoid function or
dead-band distance 
threshold (Tnear or Tfar)

Iterative Relief

a - dimensional space

I-RELIEF

SWRF*

a - dimensional space

a - dimensional space

a - dimensional space

MultiSURF

High instance weight

Low instance weight

Fig. 3. Illustrations of RBA neighbor selection and/or instance weighting schemes. Methods with a red/yellow gradient adopt an instance weighting scheme while
other methods identify instances as ‘near’ or ‘far’ which then contribute fully to feature weight updates. These illustrations are conceptual and are not drawn to scale.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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given part of the feature space. Similarly, the width of the dead-band
zone is the standard deviation σ of pairwise distances between the
target instance and all others. One final difference between MultiSURF∗

and SURF∗ is that the ‘far’ scoring logic was inverted to save compu-
tational time. Specifically in SURF∗, differences in feature values in hits
yielded a reduction in feature score, and an increase in misses. Since
different feature values are expected to be more frequent in far in-
dividuals, in MultiSURF∗, same feature values in hits yielded an increase
in feature score, and a decrease in misses. Also recognizing the im-
portance of neighbor selection, ReliefSeq proposed the concept of an
adaptive k for all features [71]. ReliefSeq effectively examines all
possible values of k up to a kmax and for each feature, picking the k that
yields the largest feature weight in the final scoring. While more
computationally intensive, the authors claim that varying k on a feature
by feature basis provides greater flexibility in detecting either main or
interaction effects. Notably, ReliefSeq was applied to the analysis of
RNA-Seq expression data. Most recently, MultiSURF was proposed,
preserving most aspects of MultiSURF∗ but eliminating the ‘far’ scoring
[113]. This was due to the fact that while ‘far’ scoring improved the
detection of 2-way interactions, it also greatly deteriorated the ability
of RBAs to detect simple main effect associations. MultiSURF is claimed
to balance performance with respect to its (1) ability to detect main or
interaction effects, (2) computational efficiency, (3) ease of use (i.e. no
parameters to set), and (4) applicability to a variety of data types.

3.4. Iterative and efficiency approaches

This section references algorithms in Table 5 with an iterative (I) or
efficiency (E) focus. As noted earlier, core RBA performance is under-
stood to degrade as the number of irrelevant features becomes ‘large’
particularly with respect to noisy problems. This has been observed or
noted in a number of works [91,103,102,77,33,39,109]. As pointed out
by Sun and Li [103], this is because a core RBA defines nearest
neighbors in the original feature space, which are highly unlikely to be
the same in weighted space (i.e. the space where we have assigned low
weights to features least likely to be relevant). To deal with this issue,
iterative and efficiency approaches have been proposed that are
wrapped around or integrated into core RBAs.

Iterative Relief introduced the idea of running the core RBA more
than once, each time using the feature weights W from the previous
iteration to update pairwise distance calculations such that a low
scoring feature from the previous iteration has less influence on in-
stance distance in the current iteration [31] (see Fig. 4). These ‘tem-
porary’ feature weights were referred to as parameters by Todorov [109]
and designated by the variable ϕ. Iteratively updating the distance
weights can cause certain samples to enter and leave neighborhoods of
other samples. To reduce discontinuities in the feature weight estimates
that arise from changing neighborhoods, Iterative Relief also in-
troduced a radius to define neighborhoods rather than a set number of
instances, as illustrated in Fig. 3. Iterations continued until the weights
W converge, or until some maximum number of iterations is reached. It
is important to be aware of stop criteria since iterative approaches can
become quite computationally expensive.

Sun and Li introduced another iterative Relief method known as I-
RELIEF [103]. I-RELIEF adopts an iterative approach similar to Iterative
Relief, but mathematically derived Relief as an online algorithm that
solves a convex optimization problem with a margin-based objective
function [103,102]. As such, I-RELIEF has been described as an outlier
removal scheme since the margin averaging is sensitive to large var-
iations [15]. Later, Local Learning I-RELIEF (our name for the unnamed
algorithm) applied the concept of local learning to improve iterative
convergence by promoting sparse feature weighting [104]. ‘Sparse’
refers to there being a minimal number of converged feature weights
with a value greater than zero. This was achieved by introducing the ℓ1
norm penalty (as in lasso) into optimization of I-RELIEF.

TuRF presents a much simpler iterative approach that can easily be

wrapped around any other core RBA despite the fact that it was ori-
ginally designed to be used with ReliefF [77] (see Algorithm 2). TuRF is
essentially a recursive feature elimination approach. Each iteration, the
lowest scoring features are eliminated from further consideration with
respect to both distance calculations and feature weight updates (see
Fig. 4). However selecting the number of iterations (p) is not trivial.
Evaporative Cooling ReliefF offers another novel approach that em-
ploys simulated annealing to iteratively remove lowest relevance fea-
tures, where relevance is a function of both ReliefF and (myopic) mu-
tual information scores [70], or instead ReliefF and transformed
random forest importance scores [69]. Most recently, the evaporative
cooling concept was adapted to the challenge of patient privacy pre-
servation, and was extended for continuous feature analysis (i.e. fMRI
network data) [64].

Algorithm 2. Pseudo-code of TuRF algorithm

←a number of attributes (i.e. features)
Parameter: ←p number of iterations

for i≔1 to p do
run ReliefF and estimate feature weights (W)
sort features by weight
remove p a/ of remaining features with lowest weights

end for
return last ReliefF weight estimates for remaining features

It was noted by Todorov [109], that for TuRF, or any of the other
iterative approaches that could ‘remove’ features from consideration by
giving them a ϕ of 0 in the distance calculation, it is still possible to
estimate a relevance score W[A] for it (thus perhaps giving the feature
the opportunity to be reintroduced as relevant later). It was warned that
this could lead to undesirable oscillatory behavior and poor con-
vergence of scoring. It should also be mentioned that any of the itera-
tive strategies for updating parameters (e.g. I-RELIEF) could also be
combined with a specific core RBA besides the one it was originally
implemented with (e.g. the iterative component of Iterative Relief could
be wrapped around the core SWRF∗ approach).

Despite the fact that core Relief algorithms are relatively fast, they
can still be slow in very large feature spaces (common to bioinfor-
matics), or more importantly, when large training sets are available
(because RBAs scale quadratically with the number of instances). One
of the more unique RBA proposals focuses on improving algorithm ef-
ficiency with regards to both run time and performance. Specifically,
VLSReliefF targets the detection of feature interactions in very large
feature spaces [33] (see Fig. 4). The principle behind VLSReliefF is
simply that weights estimated by ReliefF are more accurate when ap-
plied to smaller feature sets. Therefore it individually applies ReliefF to
some number of randomly selected feature subsets (S), each of size

<a as with the expectation that at least one subset in the population
will contain all interacting features that are associated with endpoint
(and will thus have elevated weights for those features). The partial
ReliefF results are integrated by setting the ‘global’ feature weightW[A]
to the maximum ‘local’ weight for a given feature across all S ReliefF
runs. With regards to detecting feature interactions, the risk of this
approach is that if all relevant interacting features don’t appear to-
gether in at least one of the S random feature subsets, then the inter-
action will likely be missed. That is why properly setting the S and as is
critical to maximizing the probability of success. Furthermore, knowing
the desired order of interaction to be sought (e.g. 2-way, 3-way) is
needed to calculate S. The VLSReliefF concept was inspired by work
proposing a Random Chemistry ReliefF algorithm, an iterative ap-
proach that ran ReliefF on random feature subsets [34]. The VLSReliefF
concept could be integrated with other core RBAs. An iterative TuRF-
like version called iVLSReliefF has also been proposed [33].
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3.5. Other Relief-based methods

This section references algorithms in Table 5 with a data type focus
(D). In the interest of breadth, it also summarizes ancillary Relief ex-
pansions not included in Table 5. In a number of studies, emphasis has
been placed on the handling of different data types beyond discrete
features and binary classes. Beyond RReliefF [60,89] little attention has
been paid to handling continuous endpoints (i.e. regression) other than
examples like FARelief [7], or RM-RELIEF [66]. Alternative methods of
handling continuous features beyond those originally introduced in
Relief were described by Demšar [27] and Blessie and Karthikeyan
[10]. An alternative method for handling a multi-class endpoint was
described by Ye et al. [118]. Little else has been proposed for handling
multi-class endpoints or missing data beyond adaptations of those from
the original ReliefF algorithm [58].

The Relief concept has also been adapted to a variety of specific data

problems. The most common problem is the removal of redundant
features as discussed earlier. Previously, a handful of stand-alone RBAs,
or some combination of an existing RBA with a redundancy removal
heuristic have been proposed to deal with feature redundancy
[8,35,40,41,117,19,73,122,67,17,1]. Another popular area of in-
vestigation is the adaptation of Relief to multi-label learning, i.e. where
instances can each have more than one class label assigned to it
[57,99,100,96,83,86]. Other problems to which RBAs have been
adapted include: multiple instance learning, i.e. bags of not clearly la-
beled instances [120,121], dealing with non-monotonic relationships
[9,31], dealing with survival data (i.e. data exploring the duration of
time until one or more events happen) [6], dealing with imbalanced
data [88,49], clustering [24], and feature extraction [105].

Other notable Relief methodological variations include approaches
for feature set evaluation [4], instance selection [25], and ensemble
learning [94,124]. Verma et al. [115] recently introduced the concept

Fig. 4. Illustrations of the basic concepts behind key iterative and efficiency approaches including TuRF, Iterative Relief/I-RELIEF, and VLSReliefF. Features are
represented as squares, where darker shading indicates a lower feature weight/score.
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of collective feature selection, which selects the union of features from top
performing algorithms (including RBAs), highlighting the benefit of
selecting top features identified by algorithms with different strengths
and weaknesses.

Attempts at parallelizing RBAs for run time efficiency have been
proposed by Lee et al. [65] and Eiras-Franco et al. [32]. Many other
works applying RBAs or drawing inspiration from them exist in the
literature but are beyond the scope of this methodological review.
Earlier reviews in the form of book chapters include (1) Kononenko and
Sikonja’s focused examination of their own ReliefF and RReliefF con-
tributions, (2) Moore’s brief review of ReliefF and select RBAs in the
context of epistasis analysis, and (3) Todorov’s more recent summarial
overview of target RBAs and advancements in the context of detecting
gene-environment interactions [61,76,109].

3.6. RBA evaluations

The datasets chosen to test, evaluate, and compare RBAs in previous
studies have often focused on (1) a small sample of simulated or toy
benchmark datasets [53,21], (2) a set of real-world benchmarks (e.g.
from the UCI repository) [8,35,84,98,36], (3) some real data analysis
that is new or yet to be established as a benchmark [29], or (4) some
combination of these three [58,91,103,102,70,104,15,1,30,115].

Some RBAs have been compared across a spectrum of simulated
datasets capturing a greater breadth of problem scenarios. This was true
for TuRF, SURF, SURF∗, SWRF∗, and MulitSURF∗ each developed with
the bioinformatic detection of epistastic interactions in mind
[77,39,38,101,37]. In each of these studies, RBAs were evaluated on
datasets with purely epistatic 2-way interactions (i.e. no main effects)
with varying numbers of training instances (e.g. 200–3200) as well as
different heritabilities (e.g. 0.01–0.4). Heritability is a genetics term
that indicates how much endpoint variation is due to the genetic fea-
tures. In the present context heritability can be viewed as the signal
magnitude, where a heritability of 1 is a ‘clean’ dataset (i.e. with the
correct model, endpoint values will always be correctly predicted based
on feature values), and a heritability of 0 would be a completely noisy
dataset with no meaningful endpoint associations. All features were
simulated as single nucleotide polymorphisms (SNP) that could have a
discrete value of (0, 1, or 2) representing possible genotypes. In each
dataset, two features were predictive (i.e. relevant) of a binary class
while the remaining 998 features were randomly generated, based on
genetic guidelines of expected genotype frequencies, yielding a total of
1000 features. Similarly, VLSRelief explored SNP simulations and 2-
way epistasis varying heritability similar to the other studies, but fixing
datasets to 1600 instances and simulating datasets with either 5000 or
100,000 total features [33]. It should be noted that most of these stu-
dies sought to compare core RBAs to respective iterative TuRF expan-
sions, which is why larger feature spaces were simulated.

Another recent investigation compared ReliefF, TuRF, SURF, chi-
square, logistic regression, and odds ratio, in their ability to rank fea-
tures in SNP data simulated to include 15 epistatic feature pairs each
contributing additively to class determination [30]. RBAs again per-
formed best both in this simulation, and in identifying interacting SNPs
from a real world genome-wide association study (GWAS), confirmed
by exhaustive calculation of information gain.

Beyond the simulated genetic analyses described above, there are
only a couple examples of comparative evaluations of RBAs over a
reasonably diverse set of synthetic datasets including one of Relief [5]
and another of ReliefF [12] in comparison with other feature selection
approaches. Notably in both studies, the selected RBA stood out as the
more reliable and successful feature selection algorithm, except when
dealing with removing feature redundancy. Most recently, a much
wider comparison of core RBA algorithms was completed over a broad
spectrum of simulated datasets with various properties and underlying
patterns; including main effects, interactions, and patterns of genetic
heterogeneity [113]. That study (1) confirmed the utility of RBA

methods over chi-square, ANOVA, mutual information, and random
forest based approaches for feature selection, (2) illustrated perfor-
mance differences between a number of core RBAs (i.e. ReliefF, SURF,
SURF∗, MultiSURF∗), and (3) introduced MultiSURF and novel im-
plementations of ReliefF.

Clearly, the ultimate goal in developing feature selection methods is
to apply them to real world problems and ideally facilitating the
modeling of previously unknown patterns of association in that data.
However, as similarly argued by Robnik-Šikonja and Kononenko [91],
Belanche and González [5], Bolón-Canedo et al. [12], and Olson et al.
[80]: to properly evaluate and compare methodologies, diverse simu-
lation studies should first be designed and applied. This is because: (1)
Uniquely, a simulation study can be designed by systematically varying
key experimental conditions, e.g. varying noise, the number of irrele-
vant features, or the underlying pattern of association in the data. This
allows us to explicitly identify generalizable strengths and weakness of
the methods and to draw more useful conclusions; (2) The ground-truth
of the dataset is known, e.g. we know which features are relevant vs.
irrelevant, we know the pattern of association between relevant fea-
tures and endpoint, and we know how much signal is in the dataset (i.e.
so we know what testing accuracy should be achievable in downstream
modeling). This knowledge of ground truth allows us to perform power
analyses over simulated dataset replicates to directly evaluate the
success rate of our methodologies.

3.7. Software availability

ReliefF [58] and its counterpart for dealing with regression data, i.e.
RReliefF [60], are currently the most widely implemented RBAs. They
can be found in the following freely available data mining software
packages: CORElearn [92] (in C++), Weka [43] (in Java), Orange
[28], and R [47] (within the dprep and CORElearn packages). A C++
version of ReliefF is available as part of Evaporative Cooling ReliefF.1

Separately, implementations of ReliefF [58], SURF [39], SURF∗

[38], and MultiSURF∗ [37] as well as the iterative TuRF algorithm [77]
were made available in the open source Multifactor Dimensionality
Reduction (MDR) [87] software package.2 These Java implementations
are computationally efficient, but can only handle ‘complete data’ (i.e.
no missing values) with discrete features and a binary endpoint. Python
2.7 versions of these algorithms were later implemented and made
available within the open source Extended Supervised Tracking and
Classifying System (ExSTraCS).3 [110,112]. These implementations
were less computationally efficient, but extended each algorithm to
handle different data types, including continuous features, multi-class
endpoints, regression, and missing data. Other C# implementations of
ReliefF, SURF∗, and SWRF∗ were made available as part of the modular
framework for Relief development (MoRF)4 [101]. A C# implementa-
tion of ReliefSeq5 is also available [71]. Most recently, ReliefF, SURF,
SURF∗, MultiSURF∗, MultiSURF, and TuRF were all implemented within
the Relief-Based Algorithm Training Environment (ReBATE). These
ReBATE implementations were coded more efficiently in Python (2 and
3) and similarly extended to handle the aforementioned data types.
Stand-alone, Cython-optimized ReBATE software6 and a scikit-learn
[82] compatible format7 were both made available with thorough
documentation.

1 https://github.com/insilico/EC/blob/master/src/library/ReliefF.cpp.
2 http://sourceforge.net/projects/mdr.
3 https://github.com/ryanurbs/ExSTraCS_2.0.
4 https://github.com/mattstokes42/MoRF.
5 http://insilico.utulsa.edu/index.php/reliefseq.
6 https://github.com/EpistasisLab/ReBATE.
7 https://github.com/EpistasisLab/scikit-rebate.
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4. Conclusion

In this work we have placed Relief-based algorithms (RBAs) in the
context of other feature selection methods, provided an in-depth in-
troduction to the Relief-algorithm concept, described four general
branches of RBA research, and reviewed key methodological differences
within these branches. This work highlights a number of conclusions
that can be made about RBAs, including (1) they are generally profi-
cient at detecting not only univariate effects but 2-way interactions as
well, (2) they scale linearly well with the number of features, but
quadratically with the number of training instances, (3) iterative and
efficiency approaches offer a solution to scaling RBAs up very large
feature spaces, (4) RBAs are ‘anytime’ algorithms, (5) the choice of
instance neighbors is a critical aspect of RBA success, setting these
methods apart from other feature selection approaches, (6) the in-
dividual feature weights output by an RBA can be used to probabil-
istically guide downstream machine learning methods (i.e. feature
weighting), (7) RBAs have already been flexibly adapted to an array of
data types and specific application domains, and (8) implementations of
a variety of RBAs are available.

This promising area of feature selection will likely benefit from
future research focusing on: (1) the most effective and reliable instance
weighting approach (e.g. classic ‘full’ instance weighting, or ‘distance-
from-target-based instance weighting) (2) optimizing the number of
neighbors and neighbor selection to improve RBA performance in a
problem-dependent manner (3) improved strategies (e.g. iterative or
efficacy) for scaling RBAs to large-scale data (i.e. many features and/or
many instances), (4) adapting to other new problem domains (e.g.
temporal data), (5) limiting or eliminating user defined RBA run
parameters (to make them easier to apply, and require less prior
knowledge about the problem domain to set correctly), (6) new stra-
tegies for collective or ensemble feature selection, and (7) more rig-
orous (e.g. statistical) approaches for determining a selection cutoff
threshold.

RBAs represent a powerful family of feature selection approaches
that strike a key balance between ability to detect complex patterns,
flexibility to handle different data types, and computational efficiency.
While ReliefF has been the staple go-to algorithm of the family for many
years, many advancements have since been made. Understanding these
advancements is key to selecting the best approach for application as
well as in guiding the development of even better feature selection
approaches.
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