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Abstract 
 
Background. In electronic health records, patterns of missing laboratory test results could 
capture patients’ course of disease as well as reflect clinician’s concerns or worries for 
possible conditions. These patterns are often understudied and overlooked. This study aims 
to characterize the patterns of missingness among laboratory data collected across 15 
healthcare system sites in three countries for COVID-19 inpatients. 
Methods. We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 
patients with positive COVID-19 PCR tests across three countries from 1 January 2020 
through 30 September 2021. We analyzed missing laboratory measurements across sites, 
missingness stratification by demographic variables, temporal trends of missingness, 
correlations between labs based on missingness indicators over time, and clustering of groups 
of labs based on their missingness/ordering pattern.  
Results. With these analyses, we identified mapping issues faced in seven out of 15 sites. 
We also identified nuances in data collection and variable definition for the various sites. 
Temporal trend analyses may support the use of laboratory test result missingness patterns 
in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined 
relationships between various labs that reflect clinical behaviors. 
Conclusion. This work elucidates how missing data patterns in EHRs can be leveraged to 
identify quality control issues and relationships between laboratory measurements. Missing 
data patterns will allow sites to attain better quality data for subsequent analyses and help 
researchers identify which sites are better poised to study particular questions. Our results 
could also provide insight into some of the biological relationships between labs in EHR data 
for COVID-19 patients. 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/


 

2 
 

Introduction 
 
The increasing availability of electronic health record (EHR) data has led to the burgeoning 
use of these data in various domains, including the identification of disease phenotypes and 
the clinical course of disease. Most recently, the EHR has been used as a rich source of data 
for characterizing the trajectory of the Coronavirus Disease (COVID-19, or simply COVID) that 
is caused by the SARS-CoV-2 virus. However, it is commonly acknowledged that EHR data 
often require rigorous processing and cleaning before they are of usable quality, thereby 
presenting considerable challenges to those using these data for research, quality 
improvement, or disease surveillance. Issues such as data availability [1–3], data recording or 
format inconsistencies [4,5], temporal changes in data policies [5,6], poorly standardized free-
text [1,6], lack of interoperability between EHR systems [6,7] and diagnostic coding errors [1] 
all impair the usability of EHR data. Moreover, the most frequently reported barrier to EHR 
usability is missing data or data which are expected to be in the record but are not [3,4,6,8–
12].  
 
There is an important difference in the way that clinicians and biomedical informaticians tend 
to view missing data. To a clinician, data is considered missing if a laboratory test was 
supposed to be conducted and its value recorded, but for some known or unknown reason, it 
is absent from the medical record. Therefore, if a test is measured and recorded once per 
week according to protocol, and this is carried out without issues, there is no missing data for 
this particular test. On the other hand, if an informatician is carrying out a time series analysis 
that requires a measured value each day, that laboratory test will be considered missing for 
the 6 days it was not measured. This study was originally motivated by the desire to carry out 
a time series analysis; but with laboratory tests collected at different frequencies, the issue of 
missing data and how to deal with it needed to be addressed. As we delved into this, we 
realized that missing data itself could be leveraged to learn more about EHRs, nuances across 
sites, ordering patterns, and relationships between the labs themselves.   
 
Data is missing in the EHR for two principal reasons. First, a laboratory test might have been 
ordered, but the result is missing from the record. Although important for ascertaining the 
quality of reporting systems, characterizing this type of missing data is difficult without access 
to clinical notes and ordering systems in the EHR. The second reason missing data is that a 
laboratory test was never ordered, or where a test was ordered and resulted, but for some 
reason was not resulted for some time or ever again during a hospital stay, and thus a result 
would not be expected in the EHR. Such missing data should not be considered a direct 
measure of EHR data quality, since there are many factors, often clinical, that determine when 
and if a test result is absent from the record. We focus here on this type of missing data, and 
we propose that the absence of data can be informative, and that patterns of these missing 
data can be considered as informative missingness.  
 
 
 
Patterns of Data Missingness  
 
Missing data is typically characterized according to three commonly accepted missingness 
patterns. The first is missing completely at random (MCAR). In this pattern, the missingness 
of a variable is not associated with any observed or unobserved variables, including the 
variable itself. An example would be where responses to a survey question about smoking 
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status is not present on some proportion of respondents because the question  was asked (or 
not) in a truly random fashion; in other words there is no nonrandom pattern of missingness. 
In the second pattern, missing at random (MAR), the missingness of a variable is associated 
with the value of another observed variable. For example, responses to a question on smoking 
status are dependent  on one’s occupation, resulting in a missing value for smoking when a 
respondent notes that their occupation is in health care. Finally, when data are missing in the 
EHR, it is often missing not at random (MNAR). A variable may be missing because of the 
value of the variable itself. For example, a smoker may be less likely to answer a survey 
question about smoking status because they are a heavy smoker. Note that it is not known 
whether or not the respondent is, in fact, a smoker, and that would not be known because they 
did not answer the question. In other words, the probability of determining if a respondent is a 
smoker is depending on the value of the smoking question. For this reason, such missing data 
are nonignorable, which implies that such data violate assumptions for imputation and need 
to be considered (encoded) explicitly as missing data for purposes of imputation.  
 
However, we contend that there is a special case of MNAR, where the missing data are 
informative, in this case indicating a clinician’s assumption and a decision not to order a test 
subsequent to the previous one. This type of missingness has been referred to as structurally 
missing data [13], in that there is a logical, non-random reason the data are missing. However, 
we  refer to this pattern as informative-missing not at random (I-MNAR). In this pattern, the 
missingness of a variable is dependent on the value of the variable, like MNAR, but may also 
be influenced by the value of other variables as well, whether they are observed or 
unobserved.  It is a pattern commonly seen in the EHR, where once a normal laboratory result 
is obtained, no further assays of the same type are present in the record. The absent results 
indicate that the decision not to order the test after the normal result was likely due to the 
normal value itself, but it could be that the values of other variables (such as other laboratory 
tests or clinical assessments) are taken into account during the decision-making process. 
Thus, the absence of laboratory results after a given result is informative, perhaps about the 
severity of the disease, the availability of the test, practice guidelines, or clinician preferences. 
An example of this is in [14], where the recording of rheumatoid factor test results in the EHR 
was found to be missing when a test result was negative. In other words, a test was not 
ordered because it was assumed that the test would be negative based on a prior result of the 
test.   
 
Informative Missing-Not-At Random in EHR Studies 
 
The I-MNAR pattern has been investigated in the literature, albeit under a different 
nomenclature, typically referred to simply as “informative missingness”. For example, in [15] it 
was noted that missing data are often correlated with a target variable, such as outcome. 
Informative missing data has been identified in genotype analysis and genetic association 
studies [16–21], longitudinal cohort studies [22,23], meta-analyses [24–29], exposure 
assessment in case-control studies [30], and particularly in studies using EHR data [31]. 
 
The goal of this study was to identify patterns of missing laboratory tests that might suggest 
levels of disease severity or other factors, such as patient sex or hospital characteristics that 
could influence the availability of laboratory data in the EHR. From this study, we hope to 
determine if these missing data fit an I-MNAR pattern and interpret this informativeness. 
Accordingly, we focus here specifically on the laboratory data patterns found in our 
examination of EHR data in a large international federated data consortium.  
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Setting 
For this study, we used the resources of the Consortium for the Clinical Characterization of 
COVID-19 by the EHR (4CE). The 4CE consortium includes 342 hospitals in eight countries 
with patients who have been hospitalized for COVID. The 4CE uses a federated data model 
and predictive analytics framework in a  hub-and-spoke configuration. Specifically, all 4CE-
contributing academic medical centers (spokes) query and standardize EHR data elements 
using a COVID ontology, and apply analysis locally to their COVID datasets, and then provide 
aggregate statistics to a coordinating academic medical center (hub). This agile, rapid, and 
privacy-preserving data sharing approach has efficiently and effectively supported several 
COVID studies over the last two years [32–37]. We examined EHR data from 15 4CE-
participating sites representing 232 hospitals in the United States and Europe comprising 
69,939 patients for this study. For sites with multiple hospitals, we assume that practice 
patterns are similar across the hospitals within those sites. 
 
This manuscript is structured into two main components; First we use patterns in  missingness 
for identification of QC issues; second, we delve deeper into the relationships between 
patterns of missingness between laboratory measures. After this introduction, we describe our 
methodology for defining the sample population, the variable set, and the analytic methods 
used to quantify and describe missing values. Next, we present the results as characterization 
of the distribution of missing data by laboratory test, stratified by sex, hospital site, and disease 
severity, across different time periods from admission through 60 days thereafter. We also 
present the results of an analysis that seeks to investigate the patterns of missingness with 
regard to pairs of laboratory tests. Finally, we consider a topic model analysis that clusters 
groups of labs together based on missingness patterns. 
 
 
Methods 
 
This retrospective observational study of EHR was reviewed and approved by the ethics and 
institutional review boards for all participating 4CE contributing sites. 
 
We analyzed laboratory test ordering patterns in EHR data for 69,939 patients from 232 
hospitals across three countries from the 4CE consortium for the period of 1 January 2020 
through 30 September 2021.  4CE consortium contributing sites are described in Table 1.   
 
Table 1. 4CE contributing sites. 

4CE contributing 
site 

Location Number of 
Hospitals 

Number 
of Beds 

Inpatient 
discharges/y
ear 

Ratio of 
Female: 
Male 

Ratio of 
Severe: 
Non-Severe 

Boston Children’s 
Hospital 

Boston, 
Massachusetts, 
United States 

1 404 28,000 1.03 0.30 

Beth Israel 
Deaconess 
Medical Center 

Boston, 
Massachusetts, 
United States 

1 673 40,752 1.02 1.14 

Bordeaux 
University 

Bordeaux, 
France 

3 2,676 130,033 0.76 2.23 
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Hospital 

ASST Papa 
GGiovanni XXIII 
Bergamo 

Bergamo, Italy 1 1,080 45,000 0.60 0.36 

Istituti Clinici 
Scientifici Maugeri 

Pavia, 
Lumezzane, 
and Milano, 
Italy 

3 775 12,344 1.10 0.06 

Mass General 
Brigham (Partners 
Healthcare) 

Boston, 
Massachusetts, 
United States 

10 3,418 163,521 0.94 0.58 

Northwestern 
University 

Evanston, 
Illinois, United 
States 

5 193 15,748 0.97 0.61 

University of 
Pennsylvania 

Philadelphia, 
Pennsylvania, 
United States 

5 2,469 118,188 1.13 0.33 

University of 
Michigan 

Ann Arbor, 
Michigan, 
United States 

3 1,000 49,008 0.98 1.66 

University of 
Pittsburgh 

Pittsburgh, 
Pennsylvania, 
United States 

39 8,085 369,300 0.98 0.36 

Department of 
Veteran Affairs (1) 

North Atlantic 
District, United 
States 

49 3,594 151,075 0.05 0.87 

Department of 
Veteran Affairs (2) 

Southwest 
District, United 
States 

29 3,115 156,315 0.07 0.843 

Department of 
Veteran Affairs (3) 

Midwest 
District, United 
States 

39 2,686 145,468 0.06 0.59 

Department of 
Veteran Affairs (4) 

Continental 
District, United 
States 

24 
  

2,110 113,260 0.07 1.06 

Department of 
Veteran Affairs (5) 

Pacific District, 
United States 

29  2,296 114,569 0.06 0.86 

 
The inclusion criteria include a positive COVID-19 polymerase chain reaction (PCR) test on 
or during admission to the inpatient setting. Only data from a patient’s first COVID-19 
admission was considered; subsequent admissions were not included in the analysis. We 
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collected results from 16 laboratory tests conducted over the entire admission. We selected 
these labs because (1) their abnormal values have been associated with worse outcomes 
among COVID patients in the literature and in our own 4CE mortality risk prediction models 
and (2) their ability to reflect acute pathophysiology of COVID-19 patients. The clinical 
significance of these tests and and common ordering practice is described in Supplementary 
Table 1 [38–40]. 
 
 
Quantifying missingness: definitions 
 
A missing laboratory test is logged when no results for the test are available in the EHR for a 
patient within a time point, usually within a day. Thus, we assume that a missing test result 
serves as a proxy for a test that wasn’t ordered. The number of missing results per patient will 
hence be the total number of days without a given laboratory test result for the period of 
hospital admission. Note that this is oftentimes not how missing data are defined in a clinical 
setting. Even though it could be routine practice not to order a given laboratory test each day, 
we still want to capture this information on a per-day basis to understand the ordering patterns 
of the various labs.  
 
We first investigate the overall number of missing results and the proportion of missing values 
for each site and lab. The proportion missing for a given patient is defined as the total number 
of hospital days with no results for a given laboratory test divided by the total number of days 
admitted. The purpose of this analysis is to elucidate potential quality control issues that might 
exist in our data; for example, it is standard practice for lymphocytes and neutrophils to be 
ordered together. Thus, if a site has differing amounts of missing data for these two labs, that 
may indicate a mapping issue. Other combinations that share this relationship are AST and 
ALT.  
 
Quantifying missingness across three selected indicators 
 
We characterized the degree of missingness across variables of severity, sex, and time. We 
defined COVID severity by applying an EHR-based algorithm that defines severe patients 
based on the blood gas results (partial pressure of carbon dioxide or partial pressure of 
oxygen), medications (sedatives/anesthetics or treatment for shock), diagnoses (acute 
respiratory distress syndrome or ventilator-associated pneumonia), and procedures 
(endotracheal tube insertion or invasive mechanical ventilation) [33]. A patient with one or 
more of the aforementioned data elements was noted as severe; otherwise, the patient was 
assigned as non-severe. We assess for differences in quantiles of missingness between male 
and female patients and levels of severity.  
 
We also investigated the proportion of missing laboratory values over different time intervals 
to capture the differences in patterns of laboratory missingness. To identify initial differences 
in missingness during the early days of hospital admission, we plotted on a heatmap the 
difference in proportion missing during the first 3 days of admission between severe and non-
severe patients. 
 
To identify changes in trends of missingness over time, we first modeled the rates of change 
of proportion missing over time for severe and non-severe patients separately and then plotted 
on a heatmap the difference in the rates of change. We obtained rates of change by fitting 
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linear models across days since admission and obtaining the beta coefficients. We examined 
three different time intervals: 0-10 days, 0-30 days, and 0-60 days to capture patients with 
short, medium, and long term hospital stays. For 0-10 days and 0-30 days, linear models were 
fit across the proportion missing on each hospital day following admission for all patients. For 
0-60 days, the models were fit over three-day periods. 

 
 
Identifying relationships between variables based on missingness and ordering patterns 
 
We also characterized the relationships between the labs themselves based on their 
missingness patterns. To this end, we employed Latent Dirichlet Allocation (LDA) topic 
modeling to identify similar labs based on their ordering and missingness patterns. LDA is a 
generative statistical model that allows observations to be explained by latent factors or groups 
that represent why aspects of the data are similar [42]. It is frequently used in natural language 
processing where words are observations in a collection of documents, and each document 
is a mixture of a small number of topics. In LDA, the presence of a given word can be attributed 
to one of the document’s topics, and topics are determined by words that frequently co-occur. 
The topic is interpreted to represent a theme in a document. In our setting, we treated the 
name of each laboratory test as a “word”, each patient admission (up to 30 days) as a 
document, and our topics are groups of laboratory tests. Our goal was to identify the topics, 
or “themes”, of labs that frequently occur in our COVID-19 patients across numerous sites.  
 
The input to our LDA topic modeling algorithm is the count of the number of days a laboratory 
test was ordered up to the first 30 days of a patient’s admission. We first identified the optimal 
number of topics for our input data; and then LDA learns 𝛽, or the probabilities for each topic 
that a given word belongs to a topic; and 𝜃, for each patient the probability that the patient 
contains each topic. For this work, we focus on 𝛽.  
 
We used four metrics to determine the optimal number of topics to learn from the data; in order 
to accomplish this, we evaluated a range of two to eight topics. We assessed which of these 
maximized: 

● the held-out likelihood, which provides a measure of how predictive the model is on 
unseen documents; 

● semantic coherence, which captures the tendency of a topic’s high probability words 
to co-occur in the same document; 

● the lower bound on the marginal likelihood; 
 and which minimized the residuals.  
 
Because every laboratory test has a non-zero probability of belonging to a given topic, we 
determine a cut-off based on the sum of the cumulative probabilities in decreasing order. If 
the difference between 1 and the sum of the cumulative probabilities is <= 0.05, then only the 
labs that have been summed up to that cutoff are determined to describe the topic or make 
up the majority of the probability. In essence, the labs that make up a topic should be 
responsible for about 95% of the probability mass.  
 
For each site, we generate a list of topics and the labs that describe that given topic based on 
their cumulative sum cut-off. From there, we are interested in groups of laboratory tests that 
intersect topics frequently across sites. We looked for the largest unique combination of labs 
that intersect at least nine times across all the topics from all the sites. Nine intersections was 
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chosen empirically because it allowed for four unique groups of labs across the 15 sites. From 
there, we identified other lab tests that might intersect with a given established unique group 
at least six times to show the heterogeneity between topics.  
 
Lastly, we were interested in the temporal relationships between the various labs based on 
their missingness. For each lab, we compiled a list of missing indicators for each patient on 
each day since admission. We then calculated the Spearman correlation between two 
laboratory test pairs at a given time point based on the missing indicators. We repeated this 
out to 30 days after admission. Then, for each laboratory test pair, we fit a linear model across 
the Spearman correlation values across time points. A positive slope indicates that tests were 
not initially ordered or missing together and they become more concordant as the hospital 
admission continues; a negative slope indicates that tests are initially ordered or missing 
together and lose their concordance over time. Both of these dynamics could reveal biological 
and clinical mechanisms at work. 
 
 
Results 
 

1. Patterns of missingness  each laboratory test across sites 

 
Figure 1: Summary of missingness for lab measures across all sites. (A)  Number of missing labs is calculated 
for each patient before it is averaged over the total number of patients. (B) Proportion missing is calculated by 
taking into account the total number of days with no measurements of labs divided by the total number of admitted 
days for each patient. The proportion missing is averaged across all patients. The sites with the highest percentage 
missing are labeled on the right within the plot. 
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Figure 1 shows that the missingness across labs varies widely across sites and lab measures. 
The larger variability in the number of missing values per patient Figure 1 (A) compared to 
the average proportion missing per patient Figure 1 (B) across sites is possibly due to 
differences in the distribution of the length of stay and sample size at particular sites. 
Nonetheless, the number of missing values per patient still informs the exact number of 
missing tests and is useful for identifying sites with more valid values which might be required 
for some analyses. To account for the length of admission, the proportion missing (Figure 1 
(B)) is normalized against the total number of admitted days for each patient. Generally, 
creatinine and leukocytes show the lowest number and proportion missing compared to all 
other tests. This is closely followed by bilirubin, albumin, ALT, and AST, which have a 
considerably lower number of average missing values per patient and a lower proportion 
missing (throughout patient admission) across most of the sites. Lymphocytes and neutrophils 
show a similar level of missingness as the above labs except for a visibly higher measure of 
missingness in Site 5. 
 
 
 

 
Figure 2: Difference in the quantiles of proportion missing across labs between (A) males and females as 
well as between (B) severe and non-severe patients. Sites with the largest deviation in the proportion missing 
are labeled in the plots. For (A), sites with more missingness in the positive direction have more missingness in 
male populations. For (B), sites with more missingness in the positive direction have more missingness in severe 
populations. 
 
 
Figure 2(A) shows the difference in proportion missing between males and females for each 
lab. Generally, across all labs, the difference in missingness by sex is varied in both directions 
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across all sites. We observe the largest difference in missingness between males and females 
at Site 2, with some female patients having much more missingness for D-dimer, PT, and 
leukocytes. We also observe some slight deviations at some of the sites with more 
missingness among females in neutrophils at Site 12 and more missingness among males at 
Site 13 in AST and bilirubin. It is important to note that Site 2 has the smallest sample size 
(n=162), and Sites 11-15 have very few female patients (ranging from 5.2-6.4 percent). Thus 
deviations are likely a result of variability in the data. Beyond these findings, we observe that 
most sites are well-balanced across the different sexes with regard to missingness in the data. 
 

2. Patterns of missingness of laboratory tests by patient severity 
Next, we quantified the difference in proportion missing between severe and non-severe 
patients across the entire cohort in Figure 2(B). We hypothesized for this experiment that 
there would be a higher proportion missing in non-severe patients. We observe in Figure 2(B) 
that most deviations occur at Site 2 and Site 4. We note more missing data in severe patients 
at Site 2 for fibrinogen, D-dimer, and CRP, and more missing procalcitonin results in non-
severe patients. These attributes could be explained by the fact that Site 2 has a smaller 
sample size and is a pediatric hospital, hence the current severity definition might not be suited 
for its patients. At Site 4, we observe more missing data in severe patients for D-dimer, CRP, 
ferritin, albumin, AST, ALT, bilirubin, and creatinine while we observe more missing 
procalcitonin data in non-severe patients. Site 4 does not have an intensive care unit (ICU) 
which could explain the higher proportion of missingness in severe patients. Other than these 
two sites, the remaining sites seem to be well-balanced across levels of severity with regard 
to missingness in the data over the whole admission period.  
 
 

 
Figure 3: Proportion missing for initial three days of admission. Blue cells represent labs with a higher 
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proportion missing in non-severe patients compared to severe patients. Green cells represent labs with a higher 
proportion missing in severe patients compared to non-severe patients.The inset indicates the legend for the 
heatmap and the light blue line represents the counts for each of the difference in proportion missing between 
severe and non-severe patients. 
 
Figure 3 shows the difference in proportion missing between severe and non-severe patients 
for the initial three days of admission. For the majority of the sites, we see more missingness 
in the non-severe group as opposed to the severe group. We see most deviations from this 
trend in Site 4, with more missingness in the severe group; and a variation of trends at Sites 
2 and 9.  
 
 
 

 
Figure 4: Difference in rates of change in proportion missing in severe and non-severe patients across various 
time scales. The heatmaps cover temporal changes in rate of change in proportion missing between severe and 
non-severe patients over the span of (A) 0-10 days (B) 0-30 days and (C) 0-60 days for long-stay patients. Blue 
cells represent labs with a greater increase in proportion missing in non-severe patients compared to severe 
patients. Green cells represent labs with a greater increase in proportion missing in severe patients compared to 
non-severe patients. 
 
 
To understand the differences in proportion missing across admission days, we first modeled 
the proportion missing across admission days and retrieved the rates of change (beta values) 
for both severe (𝝱severe) and non-severe patients (𝝱non-severe) separately. Then, we took the 
difference in the rates of change in proportion missing for severe and non-severe patients to 
draw up the heatmaps across sites and laboratory tests (Figure 4). We considered temporal 
trends in three different time frames: ten days and 30 days for the short-stay patients and 60 
days for the long-stay patients. Investigating the trends of missingness across different time 
frames allows for the visualization of trends that are specific to the time scales.  
 
From 0-10 days, we observe that while most sites show a higher rate of change in proportion 
missing in non-severe patients (blue cells), Sites 6, 7, and 9 had multiple labs that show the 
opposite trend with a higher rate of change in severe patients (shown in green) (Figure 4(A)). 
Site 4 also stood out with a much more pronounced difference, with a much higher rate of 
change in proportion missing in non-severe patients compared to severe patients (Figure 
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4(A)).  
 
From 0-30 days, we observe a similar trend with a higher rate of change in proportion missing 
in non-severe patients across the same sites with the addition of Site 4. Also, Site 8 showed 
a varied, but pronounced difference in the rate of proportion missing across some labs 
(Ferritin, LDH, Lymphocytes, Albumin, Creatinine) whilst showing a higher rate of change in 
proportion missing in non-severe patients whilst other labs (CRP, AST, ALT, Bilirubin, 
Leukocytes) showed a higher rate of change in proportion missing in severe patients (Figure 
4(B)).  
 
For the long-stay analysis, we included only sites that provided data for patients with hospital 
stays of at least 60 days. For this, we required sites to have at least three patients with data 
through 60 hospital days. This led to a shortlist of 10 sites having sufficient data (at least three 
patients) for this analysis. Figure 4(C) that most sites and labs show a greater rate of change 
in severe patients compared to non-severe patients (green cells). This is with the exception of 
Sites 1 and 4 with labs that are showing a greater rate of change in proportion in non-severe 
patients (Figure 4(C)). The following  temporal line plots display the actual proportions of 
missingness at various time points for severe and non-severe patients for several labs and 
can help explain some of these findings.   
 
For example, Troponin also shows a higher rate of change in severe patients across many 
sites across all time scales. One trend might be that a certain lab has a consistently higher 
rate of change in severe patients as opposed to non-severe patients (aka mostly green 
throughout the heatmap in the different time intervals) (Figure 4). We see that this is the case 
for Troponin, as shown in Figure 5. Troponin initially has more missingness than all other labs. 
Our range for possible missingness proportions is limited to [0,1] and initially we see more 
missingness in the non-severe group as opposed to the severe group. Thus, many sites hit a 
maximum proportion of missingness much faster in the non-severe group, making the rate of 
change smaller than it would be for severe patients. We also see more variability in the non-
severe group out to later days in the hospital admission. 
 

Figure 5. Changes in missing Troponin results over time. (A) severe patients and (B) non-severe patients. 
Since the range of proportions is limited to [0,1], and non-severe patients initially have more missingness than 
severe patients, we see that the rate of change across all time is higher for severe patients. 
 
Another trend is that a test may initially have a higher rate of change in non-severe patients 
early on, but the rate of change is higher in severe patients out to 60 days. We see that this is 
the case for Ferritin, as shown in Figure 6. Initially, we see a stronger increase in missingness 
in the first 10 days for non-severe patients and this remains to be the case for many sites in 
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0-30 days. However, again, patients in the non-severe group reach the maximum level of 
missingness faster than patients in the severe group. Thus, because the severe patients take 
more time to reach the maximum level of missingness, many sites will have an overall greater 
rate of change in the severe group. 
 

 
Figure 6. Changes in missing Ferritin results over time. (A) severe patients and (B) non-severe patients. Since 
the range of proportions is limited to [0,1], and non-severe patients initially have more missingness than severe 
patients, we see that the rate of change across all time is higher for severe patients. 
 
Lastly, some labs might have a consistently larger rate of change across time intervals for 
non-severe patients (or mostly blue in the heatmap for the different intervals). We see in 
Figure 7 that this is the case for Leukocytes, where this lab has a consistently lower amount 
of missingness compared to the other labs. Because the upper bound for missingness is 
further away from the initial amounts of missingness, we see that in non-severe patients it 
increases more quickly and is more pronounced overall.  
 

 
Figure 7. Changes in missing Leukocytes over time. (A) severe patients and (B) non-severe patients. Since the 
range of proportions is limited to [0,1], and non-severe patients initially have more missingness than severe 
patients, we see that the rate of change across all time is higher for non-severe patients.  
 
Based on the trends we observe in the heatmaps and some of the temporal line plots, we 
conclude that overall, there is more missingness in non-severe patients as opposed to severe 
patients over time across many of the labs in our dataset. This is what we might expect to see 
because clinicians might not test non-severe patients as heavily over time as severe patients 
who could be having more issues as their stay continues. 
 

3. Patterns of missingness shared between pairs of laboratory tests  
In identifying relationships in missingness across labs, we investigated laboratory test  pairs 
that show a change in correlation across admission days (Figure 8). We then shortlisted test 
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pairs with either a significant positive or negative change in correlation over admission days 
(Figure 8). Only test pairs that show reproducible correlations across sites are shortlisted. To 
obtain the rate of change, we fit linear models across the Spearman correlation values over 
time (Figure 8 (A) & (B)). Sites were included for a pair of the slope = |0.3| and standard error 
<= 0.25.  
 

 
Figure 8. Correlations of pairs of laboratory tests. Pairs of labs with (A) positive or (B) negative correlations 
through admission. Labs with position correlations are more strongly correlated in their missingness during later 
parts of admission; Labs with a negative association are more strongly correlated in their missingness during the 
earlier parts of admission.  
 
In Table 2, we observe several lab pairs that become positively associated during the later 
parts of admission. Notable lab pairs indicate suspicion of infection, coagulopathy including 
cardiac involvement, liver involvement, severe COVID-19 outcomes as well as rule out of 
differential diagnoses such as bacterial pneumonia.  
 
Table 2. Lab pairs that are more strongly associated during later parts of admission and their implications 

Pair of Labs # of Sites 
Median Slope (Min, 
Max) Implication 

LDH, Fibrinogen 6 0.591 (0.439, 1.608) Suspicion of infection 

Fibrinogen, D-dimer 6 0.629 (0.4, 1.843) Suspicion of coagulopathy 

Fibrinogen, 
Procalcitonin 7 0.489 (0.341, 1.6) 

Suspicion of coagulopathy with 
cardiac involvement 

LDH, Albumin 6 0.5725 (0.33, 0.918) 
Suspicion of severe COVID-related 
outcome 

LDH, Bilirubin 6 0.6685 (0.347, 0.882) Suspicion of liver involvement 

LDH, ALT 6 0.572 (0.348, 0.698) Suspicion of liver involvement 
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LDH, AST 6 0.541 (0.342, 0.688) Suspicion of liver involvement 

Procalcitonin, 
Ferritin 7 0.698 (0.364, 1.787) 

Differential diagnosis- COVID-
pneumonia vs. bacterial pneumonia 

Procalcitonin, D-
dimer 6 0.7325 (0.657, 1.7) 

Suspicion of severe COVID-related 
outcome 

 
In Table 3, we observe several lab pairs that become strongly associated during early 
admission. Notable lab pairs indicate suspicion of infection with or without kidney or liver 
involvement.  
 
Table 3. Lab pairs that are more strongly associated during earlier parts of admission and their implications 

Pair of Labs # of Sites 
Median Slope 
(Min, Max) Implication 

Bilirubin, 
Creatinine 6 

-0.5065 (-0.809, -
0.311) Suspicion of kidney involvement 

ALT, Creatinine 6 
-0.499 (-0.74, -
0.317) 

Suspicion of severe COVID-related outcome 
due to liver and kidney involvement 

Neutrophil, 
Creatinine 6 -0.44 (-1, -0.31) Suspicion of infection with kidney involvement 

Lymphocyte, 
Creatinine 6 

-0.5535 (-0.994, -
0.307) Suspicion of infection with kidney involvement 

 
4. Patterns of missingness shared between groups of laboratory tests 

To identify groups of labs that share patterns in missingness, topic modeling was done to 
arrive at a common set of labs across sites (Figure 9(A)). From 15 sites, we end up with 91 
topics derived from LDA. We include unique groups of labs with at least nine intersections 
across topics in an pSet plot. Based on these criteria, we obtained four unique groups that are 
reproducible across sites presented in Figure 9(A). The black points represent the labs that 
are consistent across all topics found across sites while the pink and red ones represent labs 
that are only found in some but not all of the topics across sites (Figure 9(A)). We find that 
overall, the groups of intersections represent groups of labs that measure for similar issues in 
a COVID-19 setting, and thus are related to one another. Group 1 consists of labs that are 
commonly ordered together on a daily basis, measuring for renal issues and infection. Group 
2 are likely tests ordered individually rather than as a group. They all are labs that have at times 
been thought to help prognosticate potential severity of COVID. Group 3 represents tests that are 
ordered together to assess liver function, and Group 4 represents coagulation studies that 
may or may not be ordered as a group.  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/


 

16 
 

 
Figure 9: Grouped labs with similar patterns of missingness. Prevalence of the top four groups of labs from 
topic modeling analyses across sites. The red/pink points show slight deviations in group membership of labs 
across different sites.  
 
 
Discussion 
 
Through characterizing and exploring laboratory test missingness patterns across a multi-
national COVID-19 study, we identified several insights and opportunities [1]. 
  

1. Missingness patterns can indicate data quality issues 
  
Initially, we observed some discrepancies in the average number of missing values in tests 
that are usually ordered together in the same panel, e.g., Neutrophils and Lymphocytes, in 
Figure 1. The sites that had this discrepancy were Sites 1, 6, and Sites 11 through 15. At Site 
1, these findings led to a correction of lab mappings to LOINC codes used at some sites and 
a subsequent correction in the data. We also found some discrepancies in the proportions of 
hepatic function tests at Site 13 and Site 10, with slightly more AST measurements as opposed 
to ALT. Mapping issues can be due to miscoding and issues with LOINC code specificity. 
Deriving knowledge of laboratory ordering patterns from clinical experts can help with 
developing more robust local data quality improvement checks. Researchers can work locally 
with their academic medical centers to provide useful solutions to address these inaccuracies 
and operationalize these data quality processes at scale. 
  

2. Missingness  patterns can indicate responses to hospital treatment capacity 
  
During the global pandemic, several academic medical centers were not prepared for the large 
influx of patients with intensive care needs. Many created makeshift ICUs. Furthermore, some 
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facilities may have implemented new triaging procedures. For example, the higher proportion 
of missing data in the initial three days of admission in Site 4 across almost all the labs could 
be attributed to the lack of an ICU in Site 4. Because patients with serious conditions might be 
in the process of having a transfer being arranged, it could explain the higher proportion of 
missing labs in the severe patients from Site 4. 
 

3. Missingness  patterns can change over time and at different rates 
 
Although all patient groups exhibit some proportion of non-reported labs, not all patient groups 
consistently demonstrate the same rate of non-reported labs over time. Patients among the 
non-severe group reach the maximum level of non-ordered labs faster than patients among 
the severe group. For short-stay patients, we observe this change for labs like troponin. For 
ferritin, we observe a higher rate of change in non-severe patients. Intuitively, for non-severe 
patients, clinicians may become less concerned about a patient’s condition, leading to reduced 
ordering rates. As a corollary, the absence of test ordering can indicate improvements in the 
patient's health. 
  

4. Missingness patterns could be predictive of clinical outcomes 
  
Missingness  patterns in healthcare data also carries a signal within itself. Lack of a reported 
lab could possibly indicate how unimportant the lab is in the progression or monitoring of 
disease and hence be an important predictor for clinical outcomes as well. Because the 
reporting patterns between labs are cross-correlated (groups of labs with shared reporting 
(and non-reporting) patterns as shown in topic modeling Figure 9), the removal of one test’s 
missing values from a model could potentially affect model performance as well. Furthermore, 
using two different data-driven methods -- spearman correlations over time as well as topic 
models -- we observed common clinical themes among lab pairs and sets including 
coagulation, infection with renal involvement, and liver involvement.   
  

5. Computational approaches for addressing ordering patterns  
  
Missingness  patterns could inform which variables would benefit from imputation for future 
studies. Including them as variables could be problematic because it is not exactly 
independent of variables. A number of approaches to dealing with informative missingness 
have been reported. These include using a Monte Carlo Expectation-Maximization simulation 
series that incorporates within-subject autocorrelation with a latent autoregressive process for 
longitudinal binary data [43], a Bayesian shrinkage approach to improve estimation of sparse 
patterns [44], and the use of an informative ordering pattern odds ratio [45–47]. Continued 
work in temporal pattern estimation in the face of informative missing data will investigate 
these methods in the context of these COVID consortium data [48].  
 
This study has several limitations. 

● Order sets were not investigated. The patterns of missingness for laboratory and other 
tests and procedures were likely influenced by standing order sets. Furthermore, order 
sets are likely to change over time as knowledge about COVID and therapies for it 
evolve over time. We plan to correlate patterns of missingness with the content of order 
sets and how they change over the course of the pandemic.   

● Missingness was not correlated with secular trends of the pandemic. As the pandemic 
has evolved, there have been a number of irregular cycles in the epidemic curve, with 
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marked changes in disease incidence associated with the Delta and Omicron variants. 
These changes are likely associated with corresponding changes in order sets and 
clinical practice. We will investigate patterns of laboratory test missingness as they 
may reflect clinical practice patterns which in turn may reflect the undulation in the 
incidence of COVID over time. 

● Type of patient care unit was not captured. It is possible that test ordering patterns 
could be influenced by the type of unit a patient was on at given points in time. For 
example, order sets may be used less frequently in intensive care units than in medical 
units, even those dedicated to COVID. Our future work will include an examination of 
“unit effect” in a temporal context, which will be important as patients move between 
acute and less-acute care settings in a given hospitalization. 

● Focus on missing test values, as opposed to missing orders. We assumed that a 
missing laboratory test result indicated that the test was not ordered. While a 
reasonable assumption, a more accurate indicator of ordering behavior would be to 
capture orders in addition to test results. We will investigate the feasibility of obtaining 
these data from the EHR in future work. 

● Severity definitions might change over time. When patients stay in the hospital for long 
periods of time, it is possible that their severity changes. Thus, there are limitations in 
looking at Figure 4 due to the fact that patients initially labeled as non-severe that 
remain in the hospital out to 60 days might not actually be non-severe at that point.  
 

Conclusion 
 
In this study, we investigated and demonstrated how characterization of missing data patterns 
in EHRs, particularly lab results, could support various steps in scientific study ranging from 
data quality to hypothesis generation. Furthermore, missing data patterns will enable consortia 
to identify which sites are better poised to study particular questions and potentially inform the 
use of imputation methods for addressing these challenges. Finally, our results may provide 
insights into some of the biological relationships between labs in EHRs data for COVID-19 
patients. 
 
Supplementary Materials 
 
Supplementary Table 1. Description of laboratory tests, results, and their clinical significance 
[38,41]. 

Laboratory test Trend Clinical significance Commonly Ordered 
Inpatient Labs  

Prothrombin Time (PT) Increased Bleeding disorders Yes 

Aspartate 
Aminotransferase (AST) 

Increased Impaired hepatic 
function 

Yes 

Alanine 
Aminotransferase (ALT) 

Increased Impaired hepatic 
function 

Yes 

Creatinine Increased Impaired renal function Yes 

Albumin Decreased Impaired hepatic or 
renal function 

Yes 
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Leukocytes Increased Infection Yes 

Lymphocyte Increased Infection Yes 

Neutrophil Increased Infection Yes 

Fibrinogen 
 

Decreased 
Increased 

Bleeding disorders 
Clotting disorders 

No 

D-dimer Increased Clotting disorder No 

Troponin Increased Cardiac injury No 

Bilirubin Increased Impaired hepatic 
function 

Yes 

Lactate Dehydrogenase 
(LDH) 

Increased Liver, lung, and other 
tissue damage 

No 

Procalcitonin Increased Infection, sepsis No 

Ferritin Increased Inflammation, infection No 

C-Reactive Protein 
(CRP)  

Increased Inflammation No 

 
 
 
References 

[1] J.C. Denny, Chapter 13: Mining electronic health records in the genomics era, PLoS 
Comput. Biol. 8 (2012) e1002823. 

[2] R.A. Bush, C.D. Connelly, A. Pérez, H. Barlow, G.J. Chiang, Extracting autism spectrum 
disorder data from the electronic health record, Appl. Clin. Inform. 8 (2017) 731–741. 

[3] M. Apte, M. Neidell, E.Y. Furuya, D. Caplan, S. Glied, E. Larson, Using electronically 
available inpatient hospital data for research, Clin. Transl. Sci. 4 (2011) 338–345. 

[4] M.S. Dittmar, S. Zimmermann, M. Creutzenberg, S. Bele, D. Bitzinger, D. Lunz, B.M. 
Graf, M. Kieninger, Evaluation of comprehensiveness and reliability of electronic health 
records concerning resuscitation efforts within academic intensive care units: a 
retrospective chart analysis, BMC Emerg. Med. 21 (2021) 69. 

[5] R. Farmer, R. Mathur, K. Bhaskaran, S.V. Eastwood, N. Chaturvedi, L. Smeeth, 
Promises and pitfalls of electronic health record analysis, Diabetologia. 61 (2018) 1241–
1248. 

[6] K.B. Bayley, T. Belnap, L. Savitz, A.L. Masica, N. Shah, N.S. Fleming, Challenges in 
using electronic health record data for CER: experience of 4 learning organizations and 
solutions applied, Med. Care. 51 (2013) S80–6. 

[7] L. Samal, P.C. Dykes, J.O. Greenberg, O. Hasan, A.K. Venkatesh, L.A. Volk, D.W. 
Bates, Care coordination gaps due to lack of interoperability in the United States: a 
qualitative study and literature review, BMC Health Serv. Res. 16 (2016) 143. 

[8] H. Aerts, D. Kalra, C. Sáez, J.M. Ramírez-Anguita, M.-A. Mayer, J.M. Garcia-Gomez, M. 
Durà-Hernández, G. Thienpont, P. Coorevits, Quality of Hospital Electronic Health 
Record (EHR) Data Based on the International Consortium for Health Outcomes 
Measurement (ICHOM) in Heart Failure: Pilot Data Quality Assessment Study, JMIR 
Med Inform. 9 (2021) e27842. 

[9] M.Y. Argalious, J.E. Dalton, T. Sreenivasalu, J. O’Hara, D.I. Sessler, The association of 
preoperative statin use and acute kidney injury after noncardiac surgery, Anesth. Analg. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/


 

20 
 

117 (2013) 916–923. 
[10] C. Chang, Y. Deng, X. Jiang, Q. Long, Multiple imputation for analysis of incomplete 

data in distributed health data networks, Nat. Commun. 11 (2020) 5467. 
[11] S.S. Feldman, G. Davlyatov, A.G. Hall, Toward Understanding the Value of Missing 

Social Determinants of Health Data in Care Transition Planning, Appl. Clin. Inform. 11 
(2020) 556–563. 

[12] M.A. Gianfrancesco, N.D. Goldstein, A narrative review on the validity of electronic 
health record-based research in epidemiology, BMC Med. Res. Methodol. 21 (2021) 
234. 

[13] B.O. Petrazzini, H. Naya, F. Lopez-Bello, G. Vazquez, L. Spangenberg, Evaluation of 
different approaches for missing data imputation on features associated to genomic 
data, BioData Min. 14 (2021) 1–13. 

[14] C.J. Sammon, A. Miller, K.R. Mahtani, T.A. Holt, N.J. McHugh, R.A. Luqmani, A.L. 
Nightingale, Missing laboratory test data in electronic general practice records: analysis 
of rheumatoid factor recording in the clinical practice research datalink, 
Pharmacoepidemiol. Drug Saf. 24 (2015) 504–509. 

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, Y. Liu, Recurrent Neural Networks for 
Multivariate Time Series with Missing Values, Sci. Rep. 8 (2018) 6085. 

[16] A.S. Allen, J.S. Collins, P.J. Rathouz, C.L. Selander, G.A. Satten, Bootstrap calibration 
of TRANSMIT for informative missingness of parental genotype data, BMC Genet. 4 
Suppl 1 (2003) S39. 

[17] A.S. Allen, P.J. Rathouz, G.A. Satten, Informative missingness in genetic association 
studies: case-parent designs, Am. J. Hum. Genet. 72 (2003) 671–680. 

[18] I. James, E. McKinnon, S. Gaudieri, G. Morahan, Diabetes Genetics Consortium, 
Missingness in the T1DGC MHC fine-mapping SNP data: association with HLA 
genotype and potential influence on genetic association studies, Diabetes Obes. Metab. 
11 Suppl 1 (2009) 101–107. 

[19] M. Kujala, J. Nevalainen, A case study of normalization, missing data and variable 
selection methods in lipidomics, Stat. Med. 34 (2015) 59–73. 

[20] W.-Y. Lin, N. Liu, Reducing bias of allele frequency estimates by modeling SNP 
genotype data with informative missingness, Front. Genet. 3 (2012) 107. 

[21] S.H. Liu, G. Erion, V. Novitsky, V. De Gruttola, Viral Genetic Linkage Analysis in the 
Presence of Missing Data, PLoS One. 10 (2015) e0135469. 

[22] N.M. Butera, D. Zeng, A. Green Howard, P. Gordon-Larsen, J. Cai, A doubly robust 
method to handle missing multilevel outcome data with application to the China Health 
and Nutrition Survey, Stat. Med. 41 (2022) 769–785. 

[23] M.C. Wu, D.A. Follmann, Use of summary measures to adjust for informative 
missingness in repeated measures data with random effects, Biometrics. 55 (1999) 75–
84. 

[24] A. Chaimani, D. Mavridis, J.P.T. Higgins, G. Salanti, I.R. White, Allowing for informative 
missingness in aggregate data meta-analysis with continuous or binary outcomes: 
Extensions to metamiss, Stata J. 18 (2018) 716–740. 

[25] R.G. Harris, M. Batterham, E.P. Neale, I. Ferreira, Impact of missing outcome data in 
meta-analyses of lifestyle interventions during pregnancy to reduce postpartum weight 
retention: An overview of systematic reviews with meta-analyses and additional 
sensitivity analyses, Obes. Rev. 22 (2021) e13318. 

[26] L.A. Kahale, A.M. Khamis, B. Diab, Y. Chang, L.C. Lopes, A. Agarwal, L. Li, R.A. 
Mustafa, S. Koujanian, R. Waziry, J.W. Busse, A. Dakik, H.J. Schünemann, L. Hooft, 
R.J. Scholten, G.H. Guyatt, E.A. Akl, Potential impact of missing outcome data on 
treatment effects in systematic reviews: imputation study, BMJ. (2020) m2898. 
https://doi.org/10.1136/bmj.m2898. 

[27] D. Mavridis, G. Salanti, T.A. Furukawa, A. Cipriani, A. Chaimani, I.R. White, Allowing for 
uncertainty due to missing and LOCF imputed outcomes in meta-analysis, Stat. Med. 38 
(2019) 720–737. 

[28] D. Mavridis, I.R. White, J.P.T. Higgins, A. Cipriani, G. Salanti, Allowing for uncertainty 
due to missing continuous outcome data in pairwise and network meta-analysis, Stat. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/


 

21 
 

Med. 34 (2015) 721–741. 
[29] I.R. White, J.P.T. Higgins, A.M. Wood, Allowing for uncertainty due to missing data in 

meta-analysis--part 1: two-stage methods, Stat. Med. 27 (2008) 711–727. 
[30] R.H. Lyles, A.S. Allen, W. Dana Flanders, L.L. Kupper, D.L. Christensen, Inference for 

case-control studies when exposure status is both informatively missing and 
misclassified, Statistics in Medicine. 25 (2006) 4065–4080. 
https://doi.org/10.1002/sim.2500. 

[31] R.H.H. Groenwold, Informative missingness in electronic health record systems: the 
curse of knowing, Diagn Progn Res. 4 (2020) 8. 

[32] G.A. Brat, G.M. Weber, N. Gehlenborg, P. Avillach, N.P. Palmer, L. Chiovato, J. Cimino, 
L.R. Waitman, G.S. Omenn, A. Malovini, J.H. Moore, B.K. Beaulieu-Jones, V. Tibollo, 
S.N. Murphy, S.L. Yi, M.S. Keller, R. Bellazzi, D.A. Hanauer, A. Serret-Larmande, A. 
Gutierrez-Sacristan, J.J. Holmes, D.S. Bell, K.D. Mandl, R.W. Follett, J.G. Klann, D.A. 
Murad, L. Scudeller, M. Bucalo, K. Kirchoff, J. Craig, J. Obeid, V. Jouhet, R. Griffier, S. 
Cossin, B. Moal, L.P. Patel, A. Bellasi, H.U. Prokosch, D. Kraska, P. Sliz, A.L.M. Tan, 
K.Y. Ngiam, A. Zambelli, D.L. Mowery, E. Schiver, B. Devkota, R.L. Bradford, M. Daniar, 
C. Daniel, V. Benoit, R. Bey, N. Paris, P. Serre, N. Orlova, J. Dubiel, M. Hilka, A.S. 
Jannot, S. Breant, J. Leblanc, N. Griffon, A. Burgun, M. Bernaux, A. Sandrin, E. 
Salamanca, S. Cormont, T. Ganslandt, T. Gradinger, J. Champ, M. Boeker, P. Martel, L. 
Esteve, A. Gramfort, O. Grisel, D. Leprovost, T. Moreau, G. Varoquaux, J.-J. Vie, D. 
Wassermann, A. Mensch, C. Caucheteux, C. Haverkamp, G. Lemaitre, S. Bosari, I.D. 
Krantz, A. South, T. Cai, I.S. Kohane, International electronic health record-derived 
COVID-19 clinical course profiles: the 4CE consortium, NPJ Digit Med. 3 (2020) 109. 

[33] J.G. Klann, G.M. Weber, H. Estiri, B. Moal, P. Avillach, C. Hong, V. Castro, T. 
Maulhardt, A.L.M. Tan, A. Geva, B.K. Beaulieu-Jones, A. Malovini, A.M. South, S. 
Visweswaran, G.S. Omenn, K.Y. Ngiam, K.D. Mandl, M. Boeker, K.L. Olson, D.L. 
Mowery, M. Morris, R.W. Follett, D.A. Hanauer, R. Bellazzi, J.H. Moore, N.-H.W. Loh, 
D.S. Bell, K.B. Wagholikar, L. Chiovato, V. Tibollo, S. Rieg, A.L.L.J. Li, V. Jouhet, E. 
Schriver, M.J. Samayamuthu, Z. Xia, M. Hutch, Y. Luo, Consortium for Clinical 
Characterization of COVID-19 by EHR (4CE) (CONSORTIA AUTHOR), I.S. Kohane, 
G.A. Brat, S.N. Murphy, Validation of an Internationally Derived Patient Severity 
Phenotype to Support COVID-19 Analytics from Electronic Health Record Data, J. Am. 
Med. Inform. Assoc. (2021). https://doi.org/10.1093/jamia/ocab018. 

[34] G.M. Weber, C. Hong, N.P. Palmer, P. Avillach, S.N. Murphy, A. Gutiérrez-Sacristán, Z. 
Xia, A. Serret-Larmande, A. Neuraz, G.S. Omenn, S. Visweswaran, J.G. Klann, A.M. 
South, N.H.W. Loh, M. Cannataro, B.K. Beaulieu-Jones, R. Bellazzi, G. Agapito, M. 
Alessiani, B.J. Aronow, D.S. Bell, A. Bellasi, V. Benoit, M. Beraghi, M. Boeker, J. Booth, 
S. Bosari, F.T. Bourgeois, N.W. Brown, M. Bucalo, L. Chiovato, L. Chiudinelli, A. 
Dagliati, B. Devkota, S.L. DuVall, R.W. Follett, T. Ganslandt, N. García Barrio, T. 
Gradinger, R. Griffier, D.A. Hanauer, J.H. Holmes, P. Horki, K.M. Huling, R.W. Issitt, V. 
Jouhet, M.S. Keller, D. Kraska, M. Liu, Y. Luo, K.E. Lynch, A. Malovini, K.D. Mandl, C. 
Mao, A. Maram, M.E. Matheny, T. Maulhardt, M. Mazzitelli, M. Milano, J.H. Moore, J.S. 
Morris, M. Morris, D.L. Mowery, T.P. Naughton, K.Y. Ngiam, J.B. Norman, L.P. Patel, M. 
Pedrera Jimenez, R.B. Ramoni, E.R. Schriver, L. Scudeller, N.J. Sebire, P. Serrano 
Balazote, A. Spiridou, A.L. Tan, B.W.L. Tan, V. Tibollo, C. Torti, E.M. Trecarichi, M. 
Vitacca, A. Zambelli, C. Zucco, I.S. Kohane, T. Cai, G.A. Brat, International 
Comparisons of Harmonized Laboratory Value Trajectories to Predict Severe COVID-
19: Leveraging the 4CE Collaborative Across 342 Hospitals and 6 Countries: A 
Retrospective Cohort Study, medRxiv. (2021). 
https://doi.org/10.1101/2020.12.16.20247684. 

[35] T.T. Le, A. Gutiérrez-Sacristán, J. Son, C. Hong, A.M. South, B.K. Beaulieu-Jones, 
N.H.W. Loh, Y. Luo, M. Morris, K.Y. Ngiam, L.P. Patel, M.J. Samayamuthu, E. Schriver, 
A.L.M. Tan, J. Moore, T. Cai, G.S. Omenn, P. Avillach, I.S. Kohane, Consortium for 
Clinical Characterization of COVID-19 by EHR (4CE), S. Visweswaran, D.L. Mowery, Z. 
Xia, Multinational characterization of neurological phenotypes in patients hospitalized 
with COVID-19, Sci. Rep. 11 (2021) 20238. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/


 

22 
 

[36] F.T. Bourgeois, A. Gutiérrez-Sacristán, M.S. Keller, M. Liu, C. Hong, C.-L. Bonzel, 
A.L.M. Tan, B.J. Aronow, M. Boeker, J. Booth, J. Cruz Rojo, B. Devkota, N. García 
Barrio, N. Gehlenborg, A. Geva, D.A. Hanauer, M.R. Hutch, R.W. Issitt, J.G. Klann, Y. 
Luo, K.D. Mandl, C. Mao, B. Moal, K.L. Moshal, S.N. Murphy, A. Neuraz, K.Y. Ngiam, 
G.S. Omenn, L.P. Patel, M.P. Jiménez, N.J. Sebire, P.S. Balazote, A. Serret-Larmande, 
A.M. South, A. Spiridou, D.M. Taylor, P. Tippmann, S. Visweswaran, G.M. Weber, I.S. 
Kohane, T. Cai, P. Avillach, Consortium for Clinical Characterization of COVID-19 by 
EHR (4CE), International Analysis of Electronic Health Records of Children and Youth 
Hospitalized With COVID-19 Infection in 6 Countries, JAMA Netw Open. 4 (2021) 
e2112596. 

[37] H. Estiri, Z.H. Strasser, G.A. Brat, Y.R. Semenov, Consortium for Characterization of 
COVID-19 by EHR (4CE), C.J. Patel, S.N. Murphy, Evolving phenotypes of non-
hospitalized patients that indicate long COVID, BMC Med. 19 (2021) 249. 

[38] J.W. Rudolf, A.S. Dighe, C.M. Coley, I.K. Kamis, B.M. Wertheim, D.E. Wright, K.B. 
Lewandrowski, J.M. Baron, Analysis of Daily Laboratory Orders at a Large Urban 
Academic Center: A Multifaceted Approach to Changing Test Ordering Patterns, Am. J. 
Clin. Pathol. 148 (2017) 128. 

[39] Website, (n.d.). 
https://shmpublications.onlinelibrary.wiley.com/doi/full/10.1002/jhm.2354?casa_token=T
qb8-
Vv7sbgAAAAA%3AT5YCnn2VadQTjLM83pk6_zI2fmn9nzKPCGzzf_KE8SRDoSa1ZyCi
oazf0eCn6nxV3fuV2bul6FD0DpE. 

[40] Journal of Hospital Medicine, (n.d.). https://doi.org/10.1002/(ISSN)1553-5606. 
[41] A.H. Corson, V.S. Fan, T. White, S.D. Sullivan, K. Asakura, M. Myint, C.R. Dale, A 

multifaceted hospitalist quality improvement intervention: Decreased frequency of 
common labs, J. Hosp. Med. 10 (2015) 390–395. 

[42] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3 (2003) 
993–1022. 

[43] P.S. Albert, D.A. Follmann, S.A. Wang, E.B. Suh, A latent autoregressive model for 
longitudinal binary data subject to informative missingness, Biometrics. 58 (2002) 631–
642. 

[44] J.T. Gaskins, M.J. Daniels, B.H. Marcus, Bayesian methods for nonignorable dropout in 
joint models in smoking cessation studies, J. Am. Stat. Assoc. 111 (2016) 1454–1465. 

[45] J.P.T. Higgins, I.R. White, A.M. Wood, Imputation methods for missing outcome data in 
meta-analysis of clinical trials, Clin. Trials. 5 (2008) 225–239. 

[46] L.M. Spineli, An empirical comparison of Bayesian modelling strategies for missing 
binary outcome data in network meta-analysis, BMC Med. Res. Methodol. 19 (2019) 86. 

[47] L.M. Spineli, C. Kalyvas, K. Pateras, Participants’ outcomes gone missing within a 
network of interventions: Bayesian modeling strategies, Stat. Med. 38 (2019) 3861–
3879. 

[48] G.M. Weber, H.G. Zhang, S. L’Yi, C.-L. Bonzel, C. Hong, P. Avillach, A. Gutiérrez-
Sacristán, N.P. Palmer, A.L.M. Tan, X. Wang, W. Yuan, N. Gehlenborg, A. Alloni, D.F. 
Amendola, A. Bellasi, R. Bellazzi, M. Beraghi, M. Bucalo, L. Chiovato, K. Cho, A. 
Dagliati, H. Estiri, R.W. Follett, N. García Barrio, D.A. Hanauer, D.W. Henderson, Y.-L. 
Ho, J.H. Holmes, M.R. Hutch, R. Kavuluru, K. Kirchoff, J.G. Klann, A.K. Krishnamurthy, 
T.T. Le, M. Liu, N.H.W. Loh, S. Lozano-Zahonero, Y. Luo, S. Maidlow, A. Makoudjou, A. 
Malovini, M.R. Martins, B. Moal, M. Morris, D.L. Mowery, S.N. Murphy, A. Neuraz, K.Y. 
Ngiam, M.P. Okoshi, G.S. Omenn, L.P. Patel, M. Pedrera Jiménez, R.A. Prudente, M.J. 
Samayamuthu, F.J. Sanz Vidorreta, E.R. Schriver, P. Schubert, P. Serrano Balazote, 
B.W. Tan, S.E. Tanni, V. Tibollo, S. Visweswaran, K.B. Wagholikar, Z. Xia, D. Zöller, 
Consortium For Clinical Characterization Of COVID-19 By EHR (4CE), I.S. Kohane, T. 
Cai, A.M. South, G.A. Brat, International Changes in COVID-19 Clinical Trajectories 
Across 315 Hospitals and 6 Countries: Retrospective Cohort Study, J. Med. Internet 
Res. 23 (2021) e31400. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.08.22274724doi: medRxiv preprint 

https://doi.org/10.1101/2022.05.08.22274724
http://creativecommons.org/licenses/by/4.0/

