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Abstract

Lexicase selection is a parent selection method that considers training cases individ-
ually, rather than in aggregate, when performing parent selection. Whereas previous
work has demonstrated the ability of lexicase selection to solve difficult problems in
program synthesis and symbolic regression, the central goal of this paper is to develop
the theoretical underpinnings that explain its performance. To this end, we derive an
analytical formula that gives the expected probabilities of selection under lexicase se-
lection, given a population and its behavior. In addition, we expand upon the relation
of lexicase selection to many-objective optimization methods to describe the behavior
of lexicase selection, which is to select individuals on the boundaries of Pareto fronts in
high-dimensional space. We show analytically why lexicase selection performs more
poorly for certain sizes of population and training cases, and show why it has been
shown to perform more poorly in continuous error spaces. To address this last con-
cern, we propose new variants of ε-lexicase selection, a method that modifies the pass
condition in lexicase selection to allow near-elite individuals to pass cases, thereby
improving selection performance with continuous errors. We show that ε-lexicase out-
performs several diversity-maintenance strategies on a number of real-world and syn-
thetic regression problems.

1 Introduction

Evolutionary computation (EC) traditionally assigns scalar fitness values to candidate
solutions to determine how to guide search. In the case of genetic programming (GP),
this fitness value summarizes how closely, on average, the behavior of the candidate
programs match the desired behavior. Take for example the task of symbolic regres-
sion, in which we attempt to find a model using a set of training examples, i.e. cases. A
typical fitness measure is the mean squared error (MSE), which averages the squared
differences between the model’s outputs, ŷ, and the target outputs, y. The effect of this
averaging is to reduce a rich set of information comparing the model’s output and the
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desired output to a single scalar value. As noted by Krawiec (2016), the relationship of
ŷ to y can only be represented crudely by this fitness value. The fitness score thereby
restricts the information conveyed to the search process about candidate programs rela-
tive to the description of their behavior available in the raw comparisons of the output
to the target, information which could help guide the search (Krawiec and O’Reilly,
2014; Krawiec and Liskowski, 2015). This observation has led to increased interest in
the development of methods that can leverage the program outputs directly to drive
search more effectively (Vanneschi et al., 2014).

In addition to reducing information, averaging test performance assumes all tests
are equally informative, leading to the potential loss of individuals who perform poorly
on average even if they are the best on a training case that is difficult for most of the
population to solve. This is particularly relevant for problems that require different
modes of behavior to produce an adequate solution to the problem (Spector, 2012).
The underlying assumption of traditional selection methods is that selection pressure
should be applied evenly with respect to training cases. In practice, cases that comprise
the problem are unlikely to be uniformly difficult. In GP, the difficulty of a training
case can be thought of as the probability of an arbitrary program solving it. Under
the assumption that arbitrary programs do not uniformly solve training instances, it
is unlikely that training instances will be uniformly difficult for a population of GP
programs. As a result, the search is likely to benefit if it can take into account the
difficulty of specific cases by recognizing individuals that perform well on harder parts
of the problem. Underlying this last point is the assumption that GP solves problems
by identifying, propagating and recombining partial solutions (i.e. building blocks) to
the task at hand (Poli and Langdon, 1998). As a result, a program that performs well
on unique subsets of the problem may contain a partial solution to our task.

Several methods have been proposed to reward individuals with uniquely good
training performance, such as implicit fitness sharing (IFS) (McKay, 2001), historically
assessed hardness (Klein and Spector, 2008), and co-solvability (Krawiec and Lichocki,
2010), all of which assign greater weight to fitness cases that are judged to be more diffi-
cult in view of the population performance. Perhaps the most effective parent selection
method designed to account for case hardness is lexicase selection (Spector, 2012). In
particular, “global pool, uniform random sequence, elitist lexicase selection” (Spector,
2012), which we refer to simply as lexicase selection, has outperformed other similarly-
motivated methods in recent studies (Helmuth et al., 2014; Helmuth and Spector, 2015;
Liskowski et al., 2015). Despite these gains, it fails to produce such benefits when ap-
plied to continuous symbolic regression problems, due to its method of selecting indi-
viduals based on training case elitism. For this reason we recently proposed (La Cava
et al., 2016) modulating the case pass conditions in lexicase selection using an automat-
ically defined ε threshold, allowing the benefits of lexicase selection to be achieved in
continuous domains.

To date, lexicase selection and ε-lexicase selection have mostly been analyzed via
empirical studies, rather than algorithmic analysis. In particular, previous work has
not explicitly described the probabilities of selection under lexicase selection compared
to other selection methods, nor how lexicase selection relates to the multi-objective
literature. Therefore, the foremost purpose of this paper is to describe analytically how
lexicase selection and ε-lexicase selection operate on a given population compared to
other approaches. With this in mind, in §3.1 we derive an equation that describes the
expected probability of selection for individuals in a given population based on their
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behavior on the training cases, for all variants of lexicase selection described here. Then
in §3.2, we analyze lexicase and ε-lexicase selection from a multi-objective viewpoint,
in which we consider each training case to be an objective. We prove that individuals
selected by lexicase selection exist at the boundaries of the Pareto front defined by the
program error vectors. We show via an illustrative example population in §4.1 how the
probabilities of selection differ under tournament, lexicase, and ε-lexicase selection.

The second purpose of this paper is to empirically assess the use of ε-lexicase selec-
tion in the task of symbolic regression. In §2.3, we define two new variants of ε-lexicase
selection: semi-dynamic and dynamic, which are shown to improve the method com-
pared to the original static implementation. A set of experiments compares variants of
ε-lexicase selection to several existing selection techniques on a set of real world bench-
mark problems. The results show the ability of ε-lexicase selection to improve the pre-
dictive accuracy of models on these problems. We examine in detail the diversity of
programs during these runs, as well as the number of cases used in selection events
to validate our hypothesis that ε-lexicase selection allows for more cases to be used
when selecting individuals compared to lexicase selection. Lastly, the time complexity
of lexicase selection is experimentally analyzed as a function of population size.

2 Methods

2.1 Preliminaries

In symbolic regression, we attempt to find a model ŷ(x) : Rd → R that maps variables
to a target output using a set of T training examples T = {ti = (yi,xi)}Ti=1, where x is
a d-dimensional vector of variables, i.e. features, and y is the desired output. We refer
to elements of T as “cases”. GP poses the problem as

minimize f(n, T ) subject to n ∈ N (1)

where N is the space of possible programs n and f denotes a minimized fitness func-
tion. GP attempts to solve the symbolic regression task by optimizing a population of
N programs N = {ni}Ni=1, each of which encodes a model of the process and produces
an estimate ŷt(n,xt) : Rd → R when evaluated on case t. We refer to ŷ(n) as the seman-
tics of program n, omitting x for brevity. We denote the squared differences between ŷ
and y (i.e., the errors) as et(n) = (yt − ŷt(n))2. We use et ∈ RN to refer to the errors of
all programs in the population on training case t. The lowest error in et is referred to
as e∗t .

A typical fitness measure (f ) is the mean squared error, MSE(n, T ) =
1
N

∑
t∈T et(n), which we use to compare our results in §4.2.1. For the purposes

of our discussion, it is irrelevant whether the MSE or the mean absolute error, i.e.
MAE(n, T ) = 1

N

∑
t∈T |yt − ŷt(n)|, is used, and so we use MAE to simplify a few exam-

ples throughout the paper. With lexicase selection and its variants, e(n) is used directly
during selection rather than averaging over cases. Nevertheless, in keeping with the
problem statement in Eqn. 1, the final program returned in our experiments is that
which minimizes the MSE.
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2.2 Lexicase Selection

Lexicase selection is a parent selection technique based on lexicographic ordering of
training (i.e. fitness) cases. The lexicase selection algorithm for a single selection event
is presented in Algorithm 1.

Algorithm 1 Lexicase Selection applied to individuals n ∈ N with errors et(n) on
training cases t ∈ T .
Selection(N , T , ns) :
P ← ∅ set of selected parents
do ns times: ns is the number of selection events
P ← P ∪ GetParent(N , T ) add selected program to P

GetParent(N , T ) :
T ′ ← T training cases
S ← N initial selection pool is the population
while |T ′| > 0 and |S| > 1: main loop
t← random choice from T ′ consider a random case
elite←min et(n) for n ∈ S determine elite fitness
for n ∈ S: reduce selection pool to elites

if et(n) 6= elite then S ← S \ {n}
T ′ ← T ′ \ {t} reduce remaining cases

return random choice from S return parent

Algorithm 1 consists of just a few steps: 1) choosing a case, 2) filtering the selection
pool based on that case, and 3) repeating until the cases are exhausted or the selection
pool is reduced to one individual. If the selection pool is not reduced by the time each
case has been considered, an individual is chosen randomly from the remaining pool,
S.

Under lexicase selection, cases in T can be thought of as filters that reduce the
selection pool to the individuals in the pool that are best on that case. Each parent
selection event constructs a new path through these filters. We refer to individuals as
“passing” a case if they remain in the selection pool when the case is considered. The
filtering strength of a case is affected by two main factors: its difficulty as defined by
the number of individuals that the case filters from the selection pool, and its order
in the selection event, which varies from selection to selection. These two factors are
interwoven in lexicase selection because a case performs its filtering on a subset of the
population created by a randomized sequence of cases that come before it. In other
words, the difficulty of a case depends not only on the problem definition, but on the
ordering of the case in the selection event, which is randomized for each selection.

The randomized case order and filtering mechanisms allow selective pressure to
continually shift to individuals that are elite on cases that are rarely solved in N . Be-
cause cases appear in various orderings during selection, there is selective pressure for
individuals to solve unique subsets of cases. Lexicase selection thereby accounts for the
difficulty of individual cases as well as the difficulty of solving arbitrarily-sized subsets
of cases. This selection pressure leads to the preservation of high behavioral diversity
during evolution (Helmuth et al., 2016a; La Cava et al., 2016).

The worst-case complexity of selecting N parents per generation with |T | = T test
cases is O(TN2). This running time stems from the fact that to select a single indi-
vidual, lexicase selection may have to consider the error value of every individual on
every test case. In contrast, tournament selection only needs to consider the precom-
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Table 1: Example population from original lexicase paper (Spector, 2012). Plex and
Pt are the probabilities of selection under lexicase selection (Eqn. 4) and tournament
selection with tournament size 2 (Eqn. 6), respectively.

Program Case Error Elite Cases MAE Plex Pt
e1 e2 e3 e4

n1 2 2 4 2 {t2, t4} 2.5 0.25 0.28
n2 1 2 4 3 {t2} 2.5 0.00 0.28
n3 2 2 3 4 {t2, t3} 2.75 0.33 0.12
n4 0 2 5 5 {t1, t2} 3.0 0.21 0.04
n5 0 3 5 2 {t1, t4} 2.5 0.21 0.28

puted fitnesses of a constant tournament size number of individuals; thus selecting
a single parent can be done in constant time. Since errors need to be calculated and
summed for every test case on every individual, tournament selection requires O(TN)
time to select N parents. Normally, due to differential performance across the popula-
tion and due to lexicase selection’s tendency to promote diversity, a lexicase selection
event will use many fewer test cases than T ; the selection pool typically winnows be-
low N as well, meaning the actual running time tends to be better than the worst-case
complexity (Helmuth et al., 2014; La Cava et al., 2016).

We use an example population originally presented in (Spector, 2012) to illustrate
some aspects of standard lexicase selection in the following sections. The population,
shown in Table 1, consists of five individuals and four training cases with discrete er-
rors. A graphical example of the filtering mechanism of selection is presented for this
example in Figure 1. Each lexicase selection event can be visualized as a randomized
depth-first pass through the training cases. Figure 1 shows three example selection
events resulting in the selection of different individuals. The population is winnowed
at each case to the elites until single individuals, shown with diamond-shaped nodes,
are selected.

2.3 ε-Lexicase Selection

Lexicase selection has been shown to be effective in discrete error spaces, both for
multi-modal problems (Spector, 2012) and for problems for which every case must be
solved exactly to be considered a solution (Helmuth et al., 2014; Helmuth and Spector,
2015). In continuous error spaces, however, the requirement for individuals to be ex-
actly equal to the elite error in the selection pool to pass a case turns out to be overly
stringent (La Cava et al., 2016). In continuous error spaces and especially for sym-
bolic regression with noisy datasets, it is unlikely for two individuals to have exactly
the same error on any training case unless they are (or reduce to) equivalent models.
As a result, lexicase selection is prone to conducting selection based on single cases,
for which the selected individual satisfies et ≡ e∗t , the minimum error on t among N .
Selecting on single cases limits the ability of lexicase to leverage case information on
subsets of test cases effectively, and can lead to poorer performance than traditional
selection methods (La Cava et al., 2016).

These observations led to the development of ε-lexicase selection (La Cava et al.,
2016), which modulates case filtering by calculating an ε threshold criteria for each
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Figure 1: A graphical representation of three parent selections using lexicase selection
on the population in Table 1. The arrows indicate different selection paths through the
training cases in circles. The boxes indicate the selection pool after the case performs
its filtering. The diamonds show the individual selected by each selection event. Train-
ing cases in gray indicate that they have already been traversed by the current parent
selection process.

training case. Hand-tuned and automatic variants of ε were proposed and tested. The
best performance was achieved by a ’parameter-less’ version that defines ε according
to the dispersion of errors in the population on each training case using the median
absolute deviation statistic:

εt = λ(et) = median(|et −median(et)|) (2)

Defining ε according to Eqn. 2 allows the threshold to conform to the performance of the
population on each training case. As the performance on each training case improves
across the population, ε shrinks, thereby modulating the selectivity of a case based on
how difficult it is. We choose the median absolute deviation in lieu of the standard
deviation statistic for calculating ε because it is more robust to outliers (Pham-Gia and
Hung, 2001).

We study three implementations of ε-lexicase selection in this paper: static, which
is the version originally proposed (La Cava et al., 2016); semi-dynamic, in which the
elite error is defined relative to the current selection pool; and dynamic, in which both
the elite error and ε are defined relative to the current selection pool.

Static ε-lexicase selection can be viewed as a preprocessing step added to lexicase
selection in which the program errors are converted to pass/fail based on an ε thresh-
old. This threshold is defined relative to e∗t , the lowest error on test case t over the
entire population. We call this static ε-lexicase selection because the elite error e∗t and ε
are only calculated once per generation, instead of relative to the current selection pool,
as described in Algorithm 2.

Semi-dynamic ε-lexicase selection differs from static ε-lexicase selection in that the
pass condition is defined relative to the best error among the pool rather than among
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Algorithm 2 Static ε-Lexicase Selection applied to individuals n ∈ N with errors et(n)
and minimum error e∗t on training cases t ∈ T . λ is the median absolute deviation
function.
Selection(N , T , ns) :
P ← ∅ set of selected parents
ε← λ(et) for t ∈ T get ε for each case across population
for t ∈ T and n ∈ N : define fitness f using within-ε pass condition

if et(n) ≤ e∗t + εt then ft(n)← 0
else ft(n)← 1

do ns times: ns is the number of selection events
P ← P ∪ GetParent(N , T ,f ) add selected program to P

GetParent(N , T , f ) :
T ′ ← T training cases
S ← N initial selection pool is the population
while |T ′| > 0 and |S| > 1: main loop
t← random choice from T ′ consider a random case
elite←min ft(n) for n ∈ S determine elite fitness
for n ∈ S: reduce selection pool

if ft(n) 6= elite then S ← S \ {n}
T ′ ← T ′ \ {t} reduce remaining cases

return random choice from S return parent

the entire population N . In this way it behaves more similarly to standard lexicase
selection (Algorithm 1), except that individuals are filtered out only if they have error
more than e∗t + εt. It is defined in Algorithm 3.

Algorithm 3 Semi-dynamic ε-Lexicase Selection applied to individuals n ∈ N with
errors et(n) on training cases t ∈ T . λ is the median absolute deviation function.
Selection(N , T , ns) :
P ← ∅ set of selected parents
ε← λ(et) for t ∈ T get ε for each case across population
do ns times: ns is the number of selection events
P ← P ∪ GetParent(N , T , ε) add selected program to P

GetParent(N , T , ε) :
T ′ ← T training cases
S ← N initial selection pool is the population
while |T ′| > 0 and |S| > 1: main loop
t← random choice from T ′ consider a random case
elite←min et(n) for n ∈ S determine elite fitness
for n ∈ S: reduce selection pool

if et(n) > elite+εt then S ← S \ {n}
T ′ ← T ′ \ {t} reduce remaining cases

return random choice from S return parent

The final variant of ε-lexicase selection is dynamic ε-lexicase selection, in which
both the error and ε are defined among the current selection pool. In this case, ε is
defined as

εt(S) = median(|et(S)−median(et(S))|) = λ(et(S)) (3)

where et(S) is the vector of errors for case t among the current selection pool S. The
dynamic ε-lexicase selection algorithm is presented in Algorithm 4.

Since calculating ε according to Eqn. 2 is O(N) for a single test case, the three ε-
lexicase selection algorithms share a worst-case complexity with lexicase selection of
O(TN2) to select N parents. As discussed in §2.2, these worst-case time complexities
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Algorithm 4 Dynamic ε-Lexicase Selection applied to individuals n ∈ N with errors
et(n) on training cases t ∈ T . λ is the median absolute deviation function.
Selection(N , T , ns) :
P ← ∅ set of selected parents
do ns times: ns is the number of selection events
P ← P ∪ GetParent(N , T ) add selected program to P

GetParent(N , T ) :
T ′ ← T training cases
S ← N initial selection pool is the population
while |T ′| > 0 and |S| > 1: main loop
t← random choice from T ′ consider a random case
elite←min et(n) for n ∈ S determine elite fitness
εt ← λ(et(S)) determine ε for case t
for n ∈ S: reduce selection pool

if et(n) > elite+εt then S ← S \ {n}
T ′ ← T ′ \ {t} reduce remaining cases

return random choice from S return parent

are rare, and empirical results have confirmed ε-lexicase to run within the same time
frame as tournament selection (La Cava et al., 2016). We assess the affect of population
size on wall-clock times in §4.2.

2.4 Related Work

Lexicase selection belongs to a class of search drivers that incorporate a program’s full
semantics directly into the search process, and as such shares a general motivation
with semantic GP methods. Geometric Semantic GP (Moraglio et al., 2012) uses a pro-
gram’s semantics in the variation step by defining mutation and crossover operators
that make steps in semantic space. Intermediate program semantics can also be lever-
aged, as shown by Behavioral GP (Krawiec and O’Reilly, 2014), which uses a program’s
execution trace to build an archive of program building blocks and learn intermediate
concepts. Unlike lexicase selection, Behavioral GP generally exploits intermediate pro-
gram semantics, rather than intermediate fitness cases, to guide search. These related
semantic GP methods tend to use established selection methods while leveraging pro-
gram semantics at other steps in the search process.

Instead of incorporating the full semantics, another option is to alter the fitness
metric by weighting training cases based on population performance (McKay, 2001). In
non-binary Implicit Fitness Sharing (IFS) (Krawiec and Nawrocki, 2013), for example,
the fitness proportion of a case is scaled by the performance of other individuals on
that case. Similarly, historically assessed hardness scales error on each training case by
the success rate of the population (Klein and Spector, 2008). These methods are able
to capture a univariate notion of fitness case difficulty, but unlike lexicase selection,
interactions between cases are not considered in estimating difficulty.

Discovery of objectives by clustering (DOC) (Krawiec and Liskowski, 2015) clus-
ters training cases by population performance, and thereby reduces training cases into
a set of objectives used in multi-objective optimization. Both IFS and DOC were outper-
formed by lexicase selection on program synthesis and boolean problems in previous
studies (Helmuth and Spector, 2015; Liskowski et al., 2015). More recently, Liskowski
and Krawiec (2017) proposed hybrid techniques that combine DOC and related ob-
jective derivation methods with ε-lexicase selection, and found that this combination
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performed well on symbolic regression problems.

Other methods attempt to sample a subset of T to reduce computation time
or improve performance, such as dynamic subset selection (Gathercole and Ross,
1994), interleaved sampling (Gonçalves and Silva, 2013), and co-evolved fitness pre-
dictors (Schmidt and Lipson, 2008). Unlike these methods, lexicase selection begins
each selection with the full set of training cases, and allows selection to adapt to pro-
gram performance on them. Another approach to adjusting selection pressure based
on population performance is to automatically tune tournament selection, a method
which was investigated by Xie and Zhang (2013). In that work, tournament selection
pressure was tuned to correspond to the distribution of fitness ranks in the population.

Although to an extent the ideas of multiobjective optimization apply to multiple
training cases, they are qualitatively different and commonly operate at different scales.
Symbolic regression often involves one or two objectives (e.g. accuracy and model con-
ciseness) and hundreds or thousands of training cases. One example of using training
cases explicitly as objectives occurs in Langdon (1995) in which small numbers of train-
ing cases (in this case 6) are used as multiple objectives in a Pareto selection scheme.
Other multi-objective approaches such as NSGA-II (Deb et al., 2002), SPEA2 (Zitzler
et al., 2001) and ParetoGP (Smits and Kotanchek, 2005) are commonly used with a
small set of objectives in symbolic regression. The “curse of dimensionality” makes
the use of objectives at the scale of typical training case sizes problematic, since most
individuals become nondominated. Scaling issues in many-objective optimization are
reviewed by Ishibuchi et al. (2008) and surveyed in Li et al. (2015). Several methods
have been proposed to deal with large numbers of objectives, including hypervolume-
based methods such as HypE, reference point methods like NSGA-III, and problem
decomposition methods like ε-MOEA and MOEA/D (Chand and Wagner, 2015). Li
et al. (2017) benchmarked several reference point methods on problems of up to 100
objectives, further shrinking the scalability gap. The connection between lexicase selec-
tion and multi-objective methods is explored in depth in §3.2.

The conversion of a model’s real-valued fitness into discrete values based on
an ε threshold has been explored in other research; for example, Novelty Search
GP (Martı́nez et al., 2013) uses a reduced error vector to define behavioral represen-
tation of individuals in the population. La Cava et al. (2016) used it for the first time as
a solution to applying lexicase selection effectively to regression, with static ε-lexicase
selection (Algorithm 2).

Recent work has empirically studied and extended lexicase selection. Helmuth
et al. (2016b) found that extreme selection events in lexicase selection were not central
to its performance improvements and that lexicase selection could re-diversify less-
diverse populations unlike tournament selection (Helmuth et al., 2016a). A survival-
based version of ε-lexicase selection has also been proposed (La Cava and Moore,
2017a,b) for maintaining uncorrelated populations in an ensemble learning context.

3 Theoretical Analysis

In the first half of this section ((§3.1), we examine the probabilities of selection under
lexicase selection. Our aims are to answer the following questions: First, what is the
probability of an individual being selected by lexicase selection, given its performance
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in a population on a set of training cases? Second, how is this probability influenced
by the sizes of the population and training set? In the second half (§3.2), we establish
relations between lexicase selection and multi-objective optimization. Our aim is to
define precisely how parents selected by lexicase variants are positioned in semantic
space.

3.1 Expected Probabilities of Selection

The probability of n being selected by lexicase selection is the probability that a case n
passes is selected and: 1) n is the only individual that passes the case; or 2) no more
cases remain and n is selected among the set of individuals that pass the selected case;
or 3) n is selected via the selection of another case that n passes (repeating the process).

Formally, let Plex(n|N , T ) be the probability of n ∈ N being selected by lexicase
selection. Let Kn(T ,N ) = {ki}Ki=1 ⊆ T be the training cases from T for which individ-
ual n is elite among N . We will use Kn for brevity. Then the probability of selection
under lexicase can be represented as a piece-wise recursive function:

Plex(n|N , T ) =


1 if |N | = 1;

1/|N | if |T | = 0;
1
|T |
∑
ks∈Kn

Plex (n|N (m|ks ∈ Km), T \ {ks}) otherwise
(4)

The first two elements of Plex follow from the lexicase algorithm: if there is one
individual in N , then it is selected; otherwise if there no more cases in in T , then n has
a probability of selection split among the individuals inN , i.e., 1/|N |. If neither of these
conditions are met, the remaining probability of selection is 1/|T | times the summation
of Plex over n’s elite cases. Each case in Kn has a probability of 1/|T | of being selected.
For each potential selection ks, the probability of n being selected as a result of this case
being chosen is dependent on the number of individuals that are also elite on this case,
represented by N (m|ks ∈ Km), and the cases that are left to be traversed, represented
by T \ {ks}.

Eqn. 4 also describes the probability of selection under ε-lexicase selection, with
the condition that elitism on a case is defined as being within ε of the best error on that
case, where the best error is defined among the whole population (static) or among the
current selection pool (semi-dynamic and dynamic) and ε is defined according to Eqn. 2
or Eqn. 3.

According to Eqn. 4, when fitness values across the population are unique, selec-
tion probability is Plex(n) = 1

|T |
∑
ks∈Kn

1 = |Kn|
|T | , since filtering the population accord-

ing to any case for which n is elite will result in n being selected. Conversely, if the
population semantics are completely homogeneous such that every individual is elite
on every case, the selection will be uniformly random, giving the selection probability
Plex(n) =

1
N . This property of uniformity in selection for identical performance holds

true each time a case is considered; a case only impacts selection if there is differential
performance on it in the selection pool. The same conclusion can be gleaned from Al-
gorithm 1: any case that every individual passes provides no selective pressure because
the selection pool does not change when that case is considered.
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Although it is tempting to pair Eqn. 4 with roulette wheel selection as an alterna-
tive to lexicase selection, an analysis of its complexity discourages such use. Eqn. 4 has
a worst-case complexity of O(TN ), which is exhibited when all individuals are elite on
T .

3.1.1 Effect of Population and Training Set Size

Previous studies have suggested that the performance of lexicase selection is sensitive
to the number of training cases (Liskowski et al., 2015). In this section we develop the
relation of population size and number of training cases to the performance of lexicase
selection as a search driver. In part, this behavior is inherent to the design of the algo-
rithm. However, this behavior is also linked to the fidelity with which lexicase selection
samples the expected probabilities of selection for each individual in the population.

The effectiveness of lexicase selection is expected to suffer when there are few
training cases. When T is small, there are very few ways in which individuals can
be selected. In an extreme case, if T = 2, an individual must be elite on one of these
two cases to be selected. In fact, in this case individuals with at most 2 different error
vectors will be selected. For continuous errors in which few individuals are elite, this
means that very few individuals are likely to produce all of the children for the subse-
quent generation, leading to hyperselection (Helmuth et al., 2016b) and diversity loss.
On the other hand, if many individuals solve both cases, selection becomes increasingly
random.

The population size is tied to selection behavior because it determines the number
of selection events (ns in Algorithms 2.1-3.3). In our implementation, ns = N , whereas
in other implementations, N ≤ ns ≤ 2N . This implies that the value of N determines
the fidelity with which Plex is approximated via the sampling of the population by
parent selection. Smaller populations will therefore produce poorer approximations of
Plex. Of course, this problem is not unique to lexicase selection; tournament selection
also samples from an expected distribution and is affected by the number of tourna-
ments (Xie et al., 2007).

Both N and T affect how well the expected probabilities of selection derived from
Eqn. 4 are approximated by lexicase selection. Consider the probability of a case being
in at least one selection event in a generation, which is one minus the probability of it
not appearing, yielding

Pr = 1−
N∏
i=1

(T − 1)!

T !(T − 1− di)!

Here, the case depth di is the number of cases used to select a parent for selection
event i. Because the case depth varies from selection to selection based on population
semantics, this case probability is difficult to analyze. However, it can be simplified to
consider the scenario in which a case appears first in selection. In fact, Eqn. 4 implies
that a case inKn influences the probability of selection of nmost heavily when it occurs
first in a selection event. There are two reasons: first, the case has the potential to filter
N−1 individuals, which is the strongest selection pressure it can apply. Second, a case’s
effect size is highest when selected first because it is not conditioned on the probability
of selection of any other cases. Each subsequent case selection has a reduced effect
on Plex of

∏d
i=1

1
T−i , where d is the case depth. These observations also highlight the

importance of the relative sizes of N and T because they affect the probability that a
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Figure 2: The probability of a case occuring first in a selection event given T training
cases and N selections.

case will be observed at the top of a selection event in a given generation, which affects
how closely Eqn. 4 is approximated. Let Pfirst be the probability that a case will come
first in a selection event at least once in a generation. Then

Pfirst = 1−
(
(T − 1)

T

)N
(5)

assuming N selection events. This function is plotted for various values of N and T in
Figure 2, and illustrates that the probability of a case appearing first in selection drops
as T grows and as N shrinks. For example, Pfirst ≈ 0.5 when N = 1000 and T = 1433.
We therefore expect the observed probabilities of selection for n ∈ N to differ from
Plex(n) when T >> N , due to insufficient sampling of the cases. In the case ofN >> T ,
we expect most cases to appear first and therefore the probability predictions made by
Eqn. 4 to be more accurate to the actual selections.

3.1.2 Probabilities under tournament selection

We compare the probability of selection under lexicase selection to that using tourna-
ment selection with an identical population and fitness structure. To do so we must
first formulate the probability of selection for an individual undergoing tournament
selection with size r tournaments. The fitness ranks of N can be calculated, for ex-
ample using MAE as fitness, with lower rank indicating better fitness. Let Si be the
individuals in N with a fitness rank of i, and let Q be the number of unique fitness
ranks. Xie et al. (2007) showed that the probability of selecting an individual with rank
j in a single tournament is

Pt =
1

|Sj |

((∑Q
i=j |Si|
N

)r
−

(∑Q
i=j+1 |Si|
N

)r)
(6)

In Table 1, the selection probabilities for the example population are shown accord-
ing to lexicase selection (Eqn. 4) and tournament selection (Eqn. 6). Note that the tour-
nament probabilities are proportional to the aggregate fitness, whereas lexicase proba-
bilities reflect more subtle but intuitive performance differences as discussed by Spector
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(2012). In §4.1 we present a more detailed population example with continuous errors
and compare probabilities of selection using lexicase, ε-lexicase and tournament selec-
tion.

3.2 Multi-objective Interpretation of Lexicase Selection

Objectives and training cases are fundamentally different entities: objectives define the
goals of the task being learned, whereas cases are the units by which progress towards
those objectives is measured. By this criteria, lexicase selection and multi-objective
optimization have historically been differentiated (Helmuth, 2015), although there is
clearly a “multi-objective” interpretation of the behavior of lexicase selection with re-
spect to the training cases. Let us assume for the remainder of this section that individ-
ual fitness cases are objectives to solve. The symbolic regression task then becomes a
high-dimensional, many-objective optimization problem. At this scale, the most pop-
ular multi-objective methods (e.g. NSGA-II and SPEA-2) tend to perform poorly, a
behavior that has been explained in literature (Wagner et al., 2007; Farina and Amato,
2002). Farina and Amato (2002) point out two short-comings of these multi-objective
methods when many objectives are considered:

the Pareto definition of optimality in a multi-criteria decision making problem
can be unsatisfactory due to essentially two reasons: the number of improved
or equal objective values is not taken into account, the (normalized) size of
improvements is not taken into account.

As we describe in §3.1, lexicase selection takes into account the number of im-
proved or equal objectives (i.e. cases) by increasing the probability of selection for
individuals who solve more cases (consider the summation in the third part of Eqn. 4).
The increase per case is proportional to the difficulty of that case, as defined by the
selection pool’s performance. Regarding Farina and Amato’s second point, the size of
the improvements are taken into account by ε-lexicase selection. They are taken into
account by the automated thresholding performed by ε which rewards individuals for
being within an acceptable range of the best performance on the case. We develop the
relationship between lexicase selection and Pareto optimization in the remainder of this
section.

It has been noted that lexicase selection guarantees the return of individuals that
are on the Pareto front with respect to the fitness cases (La Cava et al., 2016). However,
this is a necessary but not sufficient condition for selection. As we show below, lexicase
selection only selects those individuals in the “corners” or boundaries of the Pareto
front, meaning they are on the front and elite, globally, with respect to at least one
fitness case. Below, we define these Pareto relations with respect to the training cases.

Definition 3.1. n1 dominates n2, i.e., n1 ≺ n2, if ej(n1) ≤ ej(n2) ∀j ∈ {1, . . . , T} and
∃j ∈ {1, . . . , T} for which ej(n1) < ej(n2).

Definition 3.2. The Pareto set of N is the subset of N that is non-dominated with respect to
N ; i.e., n ∈ N is in the Pareto set if m ⊀ n ∀ m ∈ N .

Definition 3.3. n ∈ N is a Pareto set boundary if n ∈ Pareto set of N and ∃j ∈ {1, . . . , T}
for which ej(n) ≤ ej(m) ∀ m ∈ N .
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With these definitions in mind, we show that individuals selected by lexicase are
Pareto set boundaries.

Theorem 3.4. If individuals from a population N are selected by lexicase selection, those indi-
viduals are Pareto set boundaries of N with respect to T .

Proof. Let n1 ∈ N be any individual and let n2 ∈ N be an individual selected from
N by lexicase selection. Suppose n1 ≺ n2. Then ej(n1) ≤ ej(n2) ∀j ∈ {1, . . . , T} and
∃j ∈ {1, . . . , T} for which ej(n1) < ej(n2). Therefore n1 remains in the selection pool
for every case that n2 does, yet ∃t ∈ T for which n2 is removed from every selection
event due to n1. Hence, n2 cannot be selected by lexicase selection and the supposition
is false. Therefore n2 must be in the Pareto set of N .

Next, Algorithm 1 shows that n2 must be elite on at least one test case; therefore
∃j ∈ {1, . . . , T} for which ej(n2) ≤ ej(m) ∀ m ∈ N . Therefore, since n2 is in the Pareto
set of N , according to Definition 3.3, n2 is a Pareto set boundary of N .

Extension to ε-lexicase selection We can extend our multi-objective analysis to ε-
lexicase selection for conditions in which ε is pre-defined for each fitness case (Eqn. 2),
which is true for static and semi-dynamic ε-lexicase selection. However when ε is recal-
culated for each selection pool, the theorem is not as easily extended due to the need to
account for the dependency of ε on the current selection pool. We first define ε elitism
in terms of a relaxed dominance relation and a relaxed Pareto set. We define the domi-
nance relation with respect to ε as follows:

Definition 3.5. n1 ε-dominates n2, i.e., n1 ≺ε n2, if ej(n1) + εj ≤ ej(n2) ∀j ∈ {1, . . . , T}
and ∃j ∈ {1, . . . , T} for which ej(n1) + εj < ej(n2), where εj > 0 is defined according to
Eqn. 2.

This definition of ε-dominance differs from a previous ε-dominance definition used
by Laumanns et al. (2002) (cf. Eqn. (6)) in which n1 ≺ε n2 if

ej(n1) + εj ≤ ej(n2) ∀ j ∈ {1, . . . , T}

Definition 3.5 is more strict, requiring ej(n1)+εj < ej(n2) for at least one j in analagous
fashion to Definition 3.1. In order to extend Theorem 3.4, this definition must be more
strict since a useful ε-dominance relation needs to capture the ability of an individual
to preclude the selection of another individual under ε-lexicase selection.

Definition 3.6. The ε-Pareto set of N is the subset of N that is non-ε-dominated with respect
to N ; i.e., n ∈ N is in the ε-Pareto set if m ⊀ε n ∀ m ∈ N .

Definition 3.7. n ∈ N is an ε-Pareto set boundary if n is in the ε-Pareto set of N and ∃j ∈
{1, . . . , T} for which ej(n1) ≤ ej(m) + εj ∀ m ∈ N , where εj is defined according to Eqn 2.

Theorem 3.8. If ε is defined according to Eqn. 2, and if individuals are selected from a popula-
tion N by ε-lexicase selection, then those individuals are ε-Pareto set boundaries of N .

Proof. Let n1 ∈ N be any individual and let n2 ∈ N be an individual selected from N
by static or semi-dynamic ε-lexicase selection. Suppose n1 ≺ε n2. Therefore n1 remains
in the selection pool for every case that n2 does, yet ∃t ∈ T for which n2 is removed
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from every selection event due to n1. Hence, n2 cannot be selected by lexicase selection
and the supposition n1 ≺ε n2 is false. Therefore n1 and n2 must be in the ε-Pareto set
of N to be selected.

Next, by definition of Algorithm 2 or 3.2, n2 must be within εj of elite on at least
one test case; i.e. ∃j ∈ {1, . . . , T} for which ej(n2) ≤ ej(m) + εj ∀ m ∈ N . Therefore,
since n2 is in the ε-Pareto set ofN , according to Definition 3.7, n2 must be a ε-Pareto set
boundary of N .

To illustrate how lexicase selection only selects Pareto set boundaries, we plot an
example selection from a population evaluated on two test cases in the left plot of Fig-
ure 3. Each point in the plot represents an individual, and the squares are the Pareto set.
Under a lexicase selection event with case sequence {t1, t2}, individuals would first be
filtered to the two left-most individuals that are elite on e1, and then to the individual
among those two that is best on e2, i.e. the selected square individual. Note that the
selected individual is a Pareto set boundary. The individual on the other end of the
Pareto set shown as a black square would be selected using the opposite order of cases.

Consider the analogous case for semi-dynamic ε-lexicase selection illustrated in
the right plot of Figure 3. In this case the squares are the ε-Pareto set. Under a semi-
dynamic ε-lexicase selection event with case order {t1, t2}, the population would first
be filtered to the four left-most individuals that are within ε1 of the elite error on case t1,
and then the indicated square would be selected by being the only individual within ε2
of the elite error on t2 among the current pool. Note that although the selected individ-
ual is an ε-Pareto set boundary by Definition 3.7, it is not a boundary of the Pareto set.
Theorem 3.8 only guarantees that the selected individual is within ε of the best error
for at least one case, which in this scenario is t1. Thus Figure 3 illustrates an important
aspect of introducing ε: it reduces the selectivity of each case, ultimately resulting in
the selection of individuals that are not as extremely positioned in objective space. This
parallels the behavior of ε-dominance methods proposed by Laumanns et al. (2002)
that can lose extreme points. In light of this potential limitation, Hernández-Dı́az et al.
(2007) proposed an adaptive ε-dominance method to preserve such boundary points.

Regarding the position of solutions in this space, it’s worth noting the significance
of boundary solutions (and near boundary solutions) in the context of multi-objective
optimization. The performance of algorithms in many-objective optimization is as-
sessed by convergence, uniformity, and spread (Li and Zheng, 2009), the last of which
deals directly with the extent of boundary solutions. Indicator-based methods such as
IBEA and SMS-EMOA use a measure of the hypervolume in objective space to evaluate
algorithm performance (Wagner et al., 2007), where the hypervolume is a measure of
how well the objective space is covered by the current set of solutions. Boundary so-
lutions have been shown empirically to contribute significantly to hypervolume mea-
sures (Deb et al., 2005). The boundary solutions have an infinite score according to
NSGA-II’s crowding measure (Deb et al., 2002), with higher being better, meaning they
are the first non-dominated solutions to be preserved by selection when the population
size is reduced. However, Auger et al. (2009) showed mathematically that the position
of solutions near the boundary is less important than the angle they form with other so-
lutions when evaluating the hypervolume. Auger et al. (2009) concluded that “Extreme
points are not generally preferred as claimed in (Deb et al., 2005), since the density of
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Figure 3: An illustration of the performance of lexicase selection (left) and semi-
dynamic ε-lexicase selection (right) in a scenario involving two cases. Each point rep-
resents and individual in the population. The squares in the left figure are individuals
in the Pareto set, and the squares on the right are individuals in the ε-Pareto set. A
selection event for case sequence {t1, t2} is shown by the gray rectangles. The black
points are individuals that could be selected by any case ordering.

points does not depend on the position on the front but only on the gradient at the
respective point”.

Multi- and many-objective literature is therefore divided on how these boundary
solutions drive search when the goal of the algorithm is to approximate the optimal
Pareto front (Wagner et al., 2007). The goal of GP, in contrast, is to preserve points
in the search space that, when combined and varied, yield a single best solution. So
while the descriptions above lend insight to the function of lexicase and ε-lexicase se-
lection, the different goals of search and the high dimensionality of training cases must
be remembered when drawing parallels between these approaches.

As a last note, when considered as objectives, the worst-case complexity of lexicase
selection matches that of NSGA-II: O(TN2). Interestingly, the worst case complexity of
the crowding distance assignment portion of NSGA-II, O(TN log(N)), occurs when all
individuals are non-dominated, which is expected in high dimensions (Farina and Am-
ato, 2002; Wagner et al., 2007). Under lexicase selection, a non-dominated population
that is semantically unique will have a worst-case complexity of O(N2).

4 Experimental Analysis

We begin our experimental analysis of lexicase selection by considering an illustra-
tive example in §4.1. We then test several parent selection strategies on a set of regres-
sion benchmarks in §4.2. Finally, we quantify wall-clock runtimes for various selection
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methods as the population size is increased. 1

4.1 Illustrative Example

Here we apply the concepts from §3.1 to consider the probabilities of selection under
different methods on an example population. The goal of this section is to interweave
the analyses of §3.1 and §3.2 to give an intuitive explanation of the differences between
lexicase selection and the ε-lexicase selection variants.

An example population is presented in Table 2 featuring floating point errors, in
contrast to Table 1. In this case, the population semantics are completely unique, al-
though they result in the same mean error across the training cases, as shown in the
“Mean” column. As a result, tournament selection picks uniformly from among these
individuals, resulting in equivalent probabilities of selection. As mentioned in §3.1,
with unique populations, lexicase selection is proportional to the number of cases for
which an individual is elite. This leads lexicase selection to pick from among the four
individuals that are elite on cases, i.e. n1, n4, n5, and n9, with respective probabilities
0.2, 0.2, 0.2, and 0.4, according to Eqn. 4. Note these four individuals are Pareto set
boundaries.

Table 2: Example population with training case performances and selection probabili-
ties according to the different algorithms.

N Cases Probability of Selection

e1 e2 e3 e4 e5 Mean tourn lex ε lex
static

ε lex
semi

ε lex
dyn

n1 0.0 1.1 2.2 3.0 5.0 2.26 0.111 0.200 0.000 0.067 0.033

n2 0.1 1.2 2.0 2.0 6.0 2.26 0.111 0.000 0.150 0.117 0.200

n3 0.2 1.0 2.1 1.0 7.0 2.26 0.111 0.000 0.150 0.117 0.117

n4 1.0 2.1 0.2 0.0 8.0 2.26 0.111 0.200 0.300 0.200 0.167

n5 1.1 2.2 0.0 4.0 4.0 2.26 0.111 0.200 0.000 0.050 0.050

n6 1.2 2.0 0.1 5.0 3.0 2.26 0.111 0.000 0.000 0.050 0.033

n7 2.0 0.1 1.2 6.0 2.0 2.26 0.111 0.000 0.133 0.133 0.133

n8 2.1 0.2 1.0 7.0 1.0 2.26 0.111 0.000 0.133 0.133 0.217

n9 2.2 0.0 1.1 8.0 0.0 2.26 0.111 0.400 0.133 0.133 0.050

ε 0.9 0.9 0.9 2.0 2.0

Due to its strict definition of elitism, lexicase selection does not account for the fact
that other individuals are very close to being elite on these cases as well; for example
n2 and n3 are close to the elite error on case t1. The ε-lexicase variants address this
as noted by the smoother distribution of selection probabilities among this population.
We focus first on static ε-lexicase selection. Applying the ε threshold to the errors yields
the following discrete fitnesses:

1Code for these experiments: http://github.com/lacava/epsilon_lexicase
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e1 e2 e3 e4 e5
n1 0 1 1 1 1
n2 0 1 1 0 1
n3 0 1 1 0 1
n4 1 1 0 0 1
n5 1 1 0 1 1
n6 1 1 0 1 1
n7 1 0 1 1 0
n8 1 0 1 1 0
n9 1 0 1 1 0

The selection probabilities for static ε-lexicase selection are equivalent to the selec-
tion probabilities of lexicase selection on this converted error matrix. Note that n1 and
n5 have selection probabilities of zero because they are dominated in the converted error
space. Despite elitism on case t1, n1 is not selected since n2 and n3 are ε-elite on this
case in addition to t4. The same effect makes n5 un-selectable due to n4. Consider n4,
which has a higher probability of selection under static ε-lexicase selection than lexicase
selection. This is due to n4 being ε-elite on a unique combination of cases: t3 and t4.
Lastly, n9 is selected in equal proportions to n7 and n8 because all three are within ε of
the elite error on the same cases.

Semi-dynamic ε-lexicase selection allows for all nine individuals to be selected
with varying proportions that are similar to those derived for static ε-lexicase selection.
Selection probabilities for n1 illustrate the differences in the static and semi-dynamic
variants: n1 has a chance for selection in the semi-dynamic case because when t1 is
selected as the first case, n1 is within ε of the best case errors among the pool, i.e. {n1,
n2, n3}, for any subsequent order of cases. The probability of selection for n5 and n6
follow the same pattern.

Dynamic ε-lexicase selection produces the most differentiated selection pressure
for this example. Consider individual n8 which is the most likely to be selected for
this example. It is selected more often than n7 or n9 due to the adaptations to ε
as the selection pool is winnowed. For example, n8 is selected by case sequence
{t2, t1, t3}, for which the selection pool takes the following form after each case:
{n7, n8, n9}, {n7, n8}, {n8}. Conversely, under semi-dynamic ε-lexicase selection, n7
and n9 would not be removed by these cases because ε is fixed for that variant.

4.2 Regression Experiments

In this section we empirically test the variants of ε-lexicase selection introduced in §2.3.
The problems studied in this section are listed in Table 3. We benchmark nine methods
using eight different datasets. Six of the problems are available from the UCI repos-
itory (Lichman, 2013). The UBall5D problem is a simulated equation2 which has the
form

y =
10

5 +
∑5
i=1 (xi − 3)2

The Tower problem and UBall5D were chosen from the benchmark suite suggested by
White et al. (2012).

2UBall5D is also known as Vladislavleva-4.
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Table 3: Regression problems
used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503
Concrete 8 1030
ENC 8 768
ENH 8 768
Housing 14 506
Tower 25 3135
UBall5D 5 6024
Yacht 6 309

Table 4: GP settings.
Setting Value

Population size 1000
Crossover / mutation 60/40%
Program length limits [3, 50]
ERC range [-1,1]
Generation limit 1000
Trials 50
Terminal Set {x, ERC, +,−, ∗, /, sin, cos, exp, log}
Elitism keep best
Fitness (non-lexicase
methods)

MSE

We compare eight different selection methods: random selection, tournament se-
lection, lexicase selection, age-fitness pareto optimization (Schmidt and Lipson, 2011),
deterministic crowding (Mahfoud, 1995), and the three ε-lexicase selection methods
presented in §2.3. In addition to the selection methods that are benchmarked, we
include a comparison to regularized linear regression using Lasso (Tibshirani, 1996).
These methods are described briefly below, along with their abbreviations used in the
results.

• Random Selection (rand): selection for parents is uniform random.

• Tournament Selection (tourn): size two tournaments are conducted for choosing
parents.

• Lexicase Selection (lex): see Algorithm 1.

• Age-fitness Pareto optimization (afp): this method introduces a new individual
each generation with an age of 0. Each generation, individuals are assigned an age
equal to the number of generations since their oldest ancestor entered the popula-
tion. Parents are selected randomly to create N children. The children and parents
then compete in survival tournaments of size two, in which an individual is culled
from the population if it is dominated in terms of age and fitness by its competitor.

• Deterministic crowding (dc): A generational form of this niching method is used
in which parents are selected randomly for variation and the child competes to
replace the parent with which it is most similar. Similarity is determined based on
the Levenshtein distance of the parent’s equation forms, using a universal symbol
for coefficients. A child replaces its parent in the population only if it has a better
fitness.

• Static ε-lexicase selection (ep-lex-s): See Algorithm 2.

• Semi-dynamic ε-lexicase selection (ep-lex-sd): See Algorithm 3.

• Dynamic ε-lexicase selection (ep-lex-d): See Algorithm 4.

• Lasso (lasso): this method incorporates a regularization penalty into least squares
regression using an `1 measure of the model coefficients and uses a tuning pa-
rameter, λ, to specify the weight of this regularization. We use a least angle re-
gression (Efron et al., 2004) implementation of Lasso that automatically chooses λ
using cross validation.
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The settings for the GP system3 are shown in Table 4. We conduct 50 trials of each
method by training on a random partition of 70% of the dataset and comparing the
prediction error of the best model from each method on the other 30% of the dataset. In
addition to test error, we compare the training convergence of the GP-based methods,
the semantic diversity of the populations during the run, and the number of cases used
for selection for the lexicase methods. We calculate population diversity as the fraction
of unique semantics in the population. To compare the number of cases used in selec-
tion for the lexicase methods, we save the median number of cases used in selection
events, i.e. the case depth, each generation.

4.2.1 Regression Results

The boxplots in Figure 4 show the test set MSE for each method on each problem. In
the final subplot, we summarize the mean rankings of the methods on each trial of each
problem to give a general comparison of performance. Ranks are calculated for each
trial, and then averaged over all trials and problems to give an overall ranking com-
parison. In general we find that the ε-lexicase methods produce models with the best
generalization performance across the tested problems. Random selection and Lasso
tend to perform the worst on these problems. It is interesting to note the performance
of Lasso on the Tower problem, which is better than on other datasets; ep-lex-sd and
ep-lex-d are the only GP variants to significantly outperform it. For every problem, a
variant of ε-lexicase selection performs the best, and the three variants of it tend to per-
form similarly. In accordance with previous results (La Cava et al., 2016), lexicase selec-
tion performs worse than tournament selection for these continuous valued problems.
In contrast with previous findings (Schmidt and Lipson, 2011), dc tends to outperform
afp, although both methods perform better than tournament selection.

The ε-lexicase methods show a marked advantage in converging on a low training
error in fewer generations compared to all other methods, as evidenced in Figure 5.
Note Figure 5 reports the normalized MSE values on the training set for the best in-
dividual in the population each generation. Again we observe very little difference
between the ε-lexicase variants.

We analyze the statistical significance of the test MSE results in Tables 5 and 6.
Table 5 shows pair-wise Wilcoxon ranksum tests for each method in comparison to
ep-lex-sd. There are significant differences in performance for all problems between
ep-lex-sd and all non-ε-lexicase methods, with the exception of the comparison to dc
on the housing and tower datasets. Analysis of variance of the method rankings across
all problems indicates significant differences (p < 2e-16). A post-hoc statistical analysis
shown in Table 6 indicates that this difference is due to significant differences in rank-
ings across all problems for ep-lex-sd and ep-lex-d in pairwise comparison to all other
non-ε-lexicase methods. The three variants of ε-lexicase do not differ significantly from
each other according to this test.

Figure 6 shows the semantic diversity of the populations for each generation using
different selection methods. ε-lexicase variants, dc, and lexicase selection all produce
the highest population diversity, as expected due to their diversity maintenance design.
Interestingly, they all produce more diverse semantics than random selection, suggest-
ing that the preservation of useful diversity is an important feature of the observed per-

3available from https://epistasislab.github.io/ellyn/
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formance improvements. Surprisingly, afp is found to produce low semantic diversity,
despite its incorporation of age and random restarts each generation. Given that afp
has no explicit semantic diversity mechanism, it’s possible that age is not an adequate
surrogate for behavioral diversity on these problems.

One of the motivations for introducing an ε threshold into lexicase selection is
to allow selection to make use of more cases in continuous domains when selecting
parents. Figure 7 demonstrates that ε-lexicase methods achieve this goal. As we noted
at the beginning of §2.3, lexicase selection likely only uses one case per selection event in
continuous domains, leading to poor performance. We observe this phenonemon in the
median case depth measurements. Among the ε-lexicase variants, ep-lex-sd uses the
most cases in general, followed by ep-lex-s and ep-lex-d. Intuitively this result makes
sense: ε is likely to be largest when computed across the population, and because ep-
lex-sd uses the global ε (Eqn. 2) and a local error threshold, it is likely to keep the most
individuals at each case filtering. These results also suggest that ε shrinks substantially
when calculated among the pool after each case (Eqn. 3) in ep-lex-d.

Table 5: Significance test p-values comparing test MSE using the pair-wise Wilcoxon
rank-sum test with Holm correction for multiple comparisons. All significance tests
are conducted relative to semi-dynamic ε-lexicase (ep-lex-sd). Bold indicates p < 0.05.

lasso rand tourn lex afp dc ep-lex-s ep-lex-d

airfoil 2.54e-16 2.54e-16 2.54e-16 2.54e-16 2.55e-15 1.59e-14 0.57 0.57
concrete 2.54e-16 2.54e-16 6.24e-13 4.25e-16 2.74e-08 1.66e-04 0.1 0.057

enc 5.15e-16 2.54e-16 4.12e-14 2.57e-15 1.67e-12 1.61e-03 1 0.49
enh 2.54e-16 2.54e-16 2.67e-16 2.54e-16 1.41e-15 2.00e-14 1.21e-04 1.28e-02

housing 1.51e-05 6.20e-13 8.12e-04 3.40e-07 1.57e-02 0.22 1 1
tower 6.38e-03 2.54e-16 1.57e-15 6.39e-15 7.63e-15 3.67e-14 6.38e-03 0.066

uball5d 2.54e-16 2.54e-16 4.80e-15 1.04e-13 6.96e-16 1.55e-11 1 1
yacht 2.54e-16 5.46e-16 1.52e-07 7.86e-07 4.93e-06 1 1 0.053

Table 6: Post-hoc pairwise statistical tests of rankings across problems according to
Tukey’s Honest Significant Difference test. Bold values indicate p < 0.05 with adjust-
ment for multiple comparisons.

lasso rand tourn lex afp dc ep-lex-s ep-lex-sd

ep-lex-s 1.55e-11 1.53e-11 1.36e-09 6.19e-11 6.32e-07 0.066
ep-lex-sd 1.54e-11 1.53e-11 4.00e-11 1.63e-11 1.17e-08 3.59e-03 0.98
ep-lex-d 1.54e-11 1.53e-11 1.05e-10 1.86e-11 4.32e-08 1.00e-02 1 1

4.3 Scaling Experiment

In order to get an empirical sense of the time scaling of ε-lexicase selection in compar-
ison to other selection methods, we run a set of experiments in which the population
size is varied between 50 and 2000 while using a fixed training set of 100 samples from
the UBall5D problem. We run 10 trials of each population size setting and compare the
eight GP methods listed above. We use the results to estimate the time complexity of
the ε-lexicase selection variants as a function of population size.
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Figure 4: Boxplots of the mean squared error on the test set for 50 randomized trials of
each algorithm on the regression benchmark datasets.
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Figure 5: Training error for the best individual using different selection methods. The
results are averaged over 50 trials with 95% confidence intervals.
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Figure 6: Behavioral diversity of the population using different selection methods. The
results are averaged over 50 trials with 95% confidence intervals.
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Figure 7: Median case depths of selection each generation for the lexicase selection
variants on the regression problems. The results are averaged over 50 trials with 95%
confidence intervals.

4.3.1 Scaling Results

The results of the time complexity experiment are shown in Figure 8 as a log-log plot
with wall-clock times on the y-axis and the population size on the x-axis. We estimate
the time scaling as a function of population size by fitting a linear model to the log-
transformed results, as log(Runtime(N)) = a + b log(N), which gives Runtime(N) =
aN b. The linear models are shown in Figure 8 for the ε-lexicase selection methods,
which estimate the exponent of the complexity model, b, to be between 0.935 and 0.944.
Therefore on average over these settings, the runtime of ε-lexicase selection as a func-
tion of N is approximately Runtime(N) = 0.45N0.939. This suggests a much lower
time complexity with respect to N in practice than the worst-case complexity of N2

(see §2.2). In general, the lexicase methods fall between deterministic crowding and
tournament selection in terms of wall clock times, with afp achieving the lowest times
at higher population sizes. All runtime differences between methods are well within
an order of magnitude.

5 Discussion

The experimental results show that ε-lexicase selection performs well on the symbolic
regression problems compared to other GP methods and Lasso. ε-lexicase leads to
quicker learning on the training set (Figure 5) and better test set performance (Figure 4)
than other GP methods. The improvement in performance compared to traditional
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Figure 8: Scaling of wall-clock runtimes as a function of population size.

selection methods appears to be tied to the high semantic diversity that ε-lexicase se-
lection maintains throughout training (Figure 6), and its preservation of individuals
that perform well on unique portions of the training cases. ε-lexicase selection shows a
categorical improvement over lexicase selection for these continuous valued problems.
Although lexicase selection also maintains diverse semantics, its inferior performance
can be explained by its under-utilization of training cases for selection (Figure 7) and its
property of selecting only among strictly elite individuals (see the example from §4.1), a
property that is relaxed through the introduction of ε thresholds in ε-lexicase selection.

Two new variants of ε-lexicase selection, semi-dynamic and dynamic, perform the
best overall in our experiments. However, the variants of ε-lexicase do not differ signifi-
cantly across all tested problems, which suggests that the foundations of the method are
robust to different definitions of ε as long as they result in higher leverage of case infor-
mation during selection compared to normal lexicase selection, which underperforms
on regression problems. In view of the results, we suggest semi-dynamic ε-lexicase (ep-
lex-sd, Algorithm 3) as the default implementation of ε-lexicase selection since it has the
lowest mean test ranking and appears to utilize the most case information according to
Figure 7.

ε-lexicase selection is a global pool, uniform random sequence, non-elitist version
of lexicase selection (Spector, 2012). Compared to traditional lexicase selection, which
is elitist, ε-lexicase selection represents a relaxed version of lexicase selection; other po-
tential relaxations could show similar benefits. “Global pool” means that each selection
event begins with the entire population; however it is possible that smaller pools, per-
haps defined geographically (Spector and Klein, 2006), could improve performance on
certain problems that respond well to relaxed selection pressure. Future work could
also consider alternative orderings of test cases that may perform better than “uniform
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random sequence” ordering that has been the focus of work thus far. Liskowski et al.
(2015) attempted to use derived objective clusters as cases in lexicase selection, but
found that this actually decreased performance, possibly due to the small number of
resultant objectives. Burks and Punch (2016) found biasing case orderings in terms of
performance yielded mixed results. Nevertheless, there may be a form of ordering or
case reduction that improves lexicase selection’s performance over random shuffling.

The ordering of the training cases that produce a given parent also contains poten-
tially useful information about the parent that could be used by the search operators in
GP. Helmuth and Spector (2015) observed that lexicase selection creates large numbers
of distinct behavioral clusters in the population (an observation supported by Figure 6).
In that regard, it may be advantageous, for instance, to perform crossover on individ-
uals selected by differing orders of cases such that their offspring are more likely to
inherit subprograms with unique partial solutions to a given task. Recent work has
highlighted the usefulness of semantically diverse parents when conducting geometric
semantic crossover in geometic semantic GP (Chen et al., 2017).

Based on the observations in §3.1, when the training set is much larger than the
population size, some cases are likely to go unused. In these scenarios it may be ad-
vantageous to reduce program evaluations by lazily evaluating programs on cases as
they appear in selection events. Indeed, Eqn. 5 could be used as a guide for determining
when a lazy evaluation strategy would lead to significant computational savings.

Limitations of the current experimental analysis should be noted. First, we have
not considered hyperparameter tuning of the GP system, which we intend to pursue in
future work. In addition, the non-GP regression comparisons are limited to Lasso. In
future work, we intend to compare to a broader class of learning algorithms. Finally,
we have considered lexicase and ε-lexicase selection only in the context of GP applied
to symbolic regression. Future work should consider the application of these selection
methods to other areas of EC, and the use of these algorithms for other learning tasks.

6 Conclusions

In this paper we present a probabilistic and multi-objective analysis of lexicase selec-
tion and ε-lexicase selection. We develop the expected probabilities of selection under
lexicase selection variants, and show the impact of population size and training set size
on probabilities of selection. For the first time, the connection between lexicase selec-
tion and multi-objective optimization is analyzed, showing that individuals selected by
lexicase selection occupy the boundaries or near boundaries of the Pareto front in the
high-dimensional space spanned by the population errors.

In addition, we experimentally validate ε-lexicase selection, including the new
semi-dynamic and dynamic variants, on a set of real-world and synthetic symbolic re-
gression problems. The results suggest that ε-lexicase selection strongly improves the
ability of GP to find accurate models. Further analysis of these runs show that lexicase
variants maintain exceptionally high diversity during evolution, and that ε-lexicase
variants consider more cases per selection event than standard lexicase selection. The
results validate our motivation for creating this variant of lexicase for continuous do-
mains, and suggest the adoption of lexicase selection and variants of it in similar do-
mains.
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