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Restructuring Controllers
to Accommodate Plant
Nonlinearities
A method of controller restructuring is introduced for improved closed-loop control of
nonlinear plants. In this method, an initial controller, potentially the linear controller
designed according to the linearized model of the plant, is expanded into several candi-
date nonlinear control structures that are subsequently shaped to achieve a desired
closed-loop response. The salient feature of the proposed method is a metric for quantify-
ing structural perturbations to the controllers, which it uses to scale the structural Jaco-
bian for improving its condition number. This improved Jacobian underlies shaping of
candidate controllers through gradient-based search. Results obtained from three case
studies indicate the success of the proposed restructuring method in finding nonlinear
controllers that improve not only the closed-loop response of the nonlinear plant but also
its robustness to modeling uncertainty. [DOI: 10.1115/1.4035870]

1 Introduction

When the agility of feedback can compensate for mild plant
nonlinearities, linear controllers designed according to the linear-
ized model of the plant will suffice [1]; and in cases when the
plant nonlinearities are too severe for a single linear controller
across the range of operating points, gain scheduling can be
employed to incorporate different linear controllers at different
operating points [2]. The leap to nonlinear control can be made,
for improved performance, when accurate models of plant nonli-
nearities exist to allow nonlinear controller design [3–5]. This
paper offers an alternative method of empirical controller devel-
opment wherein a starting, generally linear, controller is expanded
into a nonlinear controller with coupled components to attain
improved closed-loop performance.

The most common platform for empirical development of non-
linear controllers has been neural networks [6–9]. However, these
controllers have a “black box” form precluding analysis that
requires the transparency of form/structure. In an attempt to attain
transparency, one can use symbolic regression wherein the pro-
cess variables, inputs, and parameters (constants) are treated as
symbols and integrated as blocks to form candidate models. Free
of restrictions on the form (structure) of candidate controllers, the
search can be conducted by genetic programming (GP) for con-
trollers generating best-fit closed-loop outputs to the desired
response [10]. However, symbolic regression is computationally
expensive, requiring anywhere from thousands to billions of eval-
uations. While so many evaluations can be accommodated in
open-loop by algebraic manipulation of the time series represent-
ing measured observations and their derivatives, they are infeasi-
ble in closed-loop wherein the system response needs to be
obtained via simulation for each adopted controller. As such, the
use of evolutionary and/or genetic algorithms in controls has been
confined to parameter optimization [11,12] or search among a lim-
ited number of structural components [13,14].

Whereas the method proposed in this paper also restricts the
search space to a limited number of candidate controllers, it for-
mulates them by restructuring an initial controller instead of rely-
ing on preformulated fixed structures. Furthermore, it incorporates
pliability in these restructured controllers by inclusion of expo-
nents that can be adapted toward their suitable form. The adapta-
tion of these exponents, which amounts to a local search around
the initial controller, is performed by the model structure adapta-
tion method (MSAM) [15]. A key feature of MSAM, that enables
the implementation of gradient-based adaptation as its search
mechanism, is its quantification of structural changes to the con-
trollers. MSAM uses this metric to scale the structural sensitivities
such that they will remain robust to parametric error during adap-
tation. The proposed controller restructuring is schematized in
Fig. 1, which resembles the strategy used in iterative feedback
tuning (IFT) [16–19]. In this scheme, G represents the nonlinear
plant and Gc the controller. Whereas in IFT the parameters of Gc

are adjusted/tuned, in MSAM a candidate set of controller formats
with pliable structures are considered which are adapted itera-
tively to produce the desired response yd to the reference input r.
Therefore, MSAM differs from iterative tuning in that it changes
the controller structure instead of just its parameters toward the
desired response. In Fig. 1, u denotes the control effort, n the mea-
surement noise, and ey represents the error between the closed-
loop response of the system by and its desired response yd.

Fig. 1 Schematic of restructured controller adaptation by
MSAM
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2 Model Structure Adaptation Method

Model structure adaptation method, which is a gradient-based
method of symbolic adaptation for dynamic models [15,20], begins
with an initial controller. It uses the components of this initial control-
ler and creates pairwise coupling between the individual components,
amended by exponents. It then forms a set of restructured candidate
controllers from different combinations of coupled components and
adapts the exponents of each controller by gradient-based search to
optimize the influence of individual couplings. It subsequently evalu-
ates the performance of these candidate controllers in closed-loop to
find the best controller that surpasses the initial controller in matching
the desired response yd. The salient feature of MSAM is its use of a
metric for symbolic changes to the model, which it uses for scaling
the structural Jacobian. This scaling is shown to improve the condi-
tion number of the structural Jacobian, for reliable implementation of
gradient-based adaptation in the symbolic domain.

In MSAM, the initial controller u ¼MH is considered to be the
weighted sum of individual components Mi, as

MH ¼
XQ

i¼1

hiMi ¼ HTM (1)

where M¼ [M1,…, MQ]T comprises components Mi that are
products of combinations of state variables xi included in the state
vector x¼ [x1,…, xn]T. For instance, with a proportional-integral-

derivative controller as the initial controller MeH ¼ Kp�ðtÞþ
Ki

Ð
�ðtÞdtþKdd�=dt; �ðtÞ ¼ rðtÞ � byðtÞ; M¼ ½M1 M2 M3�T ¼ ½�ðtÞ;Ð

�ðtÞdt; d�=dt�T with the corresponding parameter values

H¼ ½h1 h2 h3�T ¼ ½Kp; Ki; Kd�T. The fidelity of the controller can
be evaluated by how closely the closed-loop response of the non-
linear plant matches the desired response yd, as represented by

their difference eybM where cM denotes the candidate controller.

The fitness function in MSAM is often defined as

F ¼ q by; yd
� �

XN

k¼1

jey tkð Þj
(2)

where qðby; ydÞ denotes the correlation coefficient between the
closed-loop response by and the desired response yd, computed as
qðby; ydÞ ¼ Cbyyd=rbyryd where Cbyyd is the covariance of by and yd,
and r denotes standard deviation. The larger the fitness value,
the closer the closed-loop response is to its target; therefore,
this fitness function is used primarily to evaluate the fitness of
various candidate controllers in the first stage of adaptation by
MSAM. It should be noted here that by is not only a function of
the controller structure cM and its parameters H but also the ref-
erence r, the plant G, and noise n. Given that ey, in addition to
its role in the fitness function, is the basis for adaptation of the
candidate controller cM, it is imperative to have persistency of
excitation [6] by eyðtÞ.

With the commonality of r, G, and yd among the candidate con-
trollers, the output error ey is a function of the candidate controllercM and its parameters H. If one assumes that an ideal controller
M* with the ideal parameters H� exists that could generate the
desired response yd, then the output error ey is mainly caused by
the structural mismatch; i.e., fM 6¼M� as well as the parametric
error gDH ¼ H� � eH. In IFT [16,21,22], the controller form is
assumed correct and the model parameters are tuned to reduce ey.
However, when the controller form is incorrect (i.e., fM 6¼M�),
parameter tuning will be superficial. Since structural accuracy of
the controller transcends its parametric accuracy, MSAM focuses
on structural adaptation of Gc.

Controller restructuring in MSAM is performed by adjusting
each nominal component of the initial controller eMi as eMi )eMi
bf iðxÞ

ci to yield candidate controllers of the form

cMeH ¼XQ

i¼1

ehi
eMi
bf iðxÞ

ci ¼ eHTcM (3)

where cM ¼ ½ eM1
bf 1ðxÞ

c1 ; …; eMQ
bf QðxÞ

cQ �T, the bf i are functions of
individual state variables, such as jxij; signðxiÞ; and cosðxiÞ, con-
sidered to improve the controller form, and the ci 2 < are expo-
nents to achieve two goals: (i) to mitigate the discrete nature of
the introduced model change and (ii) to provide a mechanism for
calibrating the degree of change to individual model components
for higher granularity. For instance, to restructure a proportional
integral derivative controller into the nonlinear form
Kp�ðtÞjd�=dtjc þ Ki

Ð
�ðtÞdtþ Kdd�=dt, the first component eM1 ¼

�ðtÞ needs to be changed to bM1 ¼ �ðtÞjd�=dtjc. Assuming that the
ideal controller structure M

* can be reached by the introduction of
adjustments bf to the initial controller structure fM, the ideal con-
troller will have the form M� ¼ ½ eM1f �1 ðxÞ

c�1 ; …; eMQf �QðxÞ
c�Q �T.

Hence, the adaptation strategy entails applying adjustments of
the form (3) to individual components of the initial controller fM
during a round robin stage, and then adapting the exponent ci to
fine-tune the controller structure. The goal of MSAM is to mainly
find the form f� ¼ ½f �1 ðxÞ;…; f �QðxÞ�

T
, in the first stage of adapta-

tion, called round robin, and then fine-tune the exponents ci, to
achieve C ¼ ½c1;…; cQ�T ) C� ¼ ½c�1;…; c�Q�

T
. For illustration

purposes, selection of the best candidate controller in the first
stage, followed by its adaptation in the second stage, is shown in
Fig. 2. The plots in the first stage represent the fitness values of
the candidate controllers during the first 15 iterations of adapta-
tion. The inferior controllers are discarded for the second stage
where adaptation is continued toward fine-tuning the exponents of
the best-fit controller.

For gradient-based search in the round robin stage, the output
error eyðtÞ is defined by its first-order approximation at the nominal
parameter values ehi, and exponents bci, as

eybM tð Þ ¼ yd tð Þ � bybM tð Þ � eyh �
XQ

i¼1

cDc i

@bybM tð Þ
@ci

 !
¼ eyc ¼ Uc

cDC

(4)

where eyh ¼
PQ

i¼1
fDhið@bybMðtÞ=@hiÞ denotes the parametric error.

Since potential collinearity between hi, ci pairs often hinders their
concurrent adaptation, only the exponents are adapted iteratively
for their larger influence on the error (in the absence of bifurca-
tion) [15,20]. Here, a key contribution of MSAM [15] is its intro-
duction of the “model perturbation magnitude” dMi to quantify
model changes affected by perturbations to the exponents ci in
Eq. (3), as

Fig. 2 Illustration of the two adaptation stages by MSAM, can-
didate model selection in the round robin stage, followed by
further adaptation of the selected model in the second stage, as
represented by the inverse of the fitness value for each model
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dMi ¼

XN

k¼1

�������� @by tk; bC þ dci;
eH� �

@H
� @by tk; bC; eH� �

@H

��������
2XN

k¼1

�������� @by tk; bC; eH� �
@H

��������
2

(5)

to be used in the scaling of structural sensitivity, as

@byðt; bC; eHÞ=@ci � ðbyðt; bC þ dci;
eHÞ � byðt; bC; eHÞÞ=dMi (6)

in lieu of dci in the denominator of the finite difference approxi-
mation of the output sensitivity.

The availability of the Jacobian Uc enables estimation of the
exponential errors Dci according to nonlinear least-squares, as

cDC ¼ ½cDc1;…;cDcQ�T ¼ UT
c Uc

� ��1

UT
c eyN (7)

and consequent adaptation of the exponents, as

ciðqþ 1Þ ¼ ciðqÞ þ lðqÞDciðqÞ (8)

where eyN is the vector of sampled output error, q is the iteration num-
ber, and l(q) is the adaptation step size, determined at each iteration.

3 Study Platforms

Three closed-loop platforms are considered for studying the
feasibility of MSAM. The first platform, depicted in Ref. [2], con-
sists of a linear plant that is actuated by a nonlinear valve, repre-
senting a compartmentalized plant nonlinearity. Åstr€om and
Wittenmark [2] capitalize on knowledge of the actuator nonlinear-
ity to cascade the linear (proportional plus integral (PI)) controller
with the inverse function of the actuator model so as to neutralize/
compensate for its nonlinearity. The PI controller was restructured
by MSAM to replace the controller and cascaded inverse function.
The second platform is the benchmark control of an inverted pen-
dulum on a cart which presents an inherently nonlinear and unsta-
ble plant commonly controlled within small deviations from the
vertical position. These two platforms are used to study the char-
acteristics of the restructured controllers. Since it is also prudent
to compare the performance of restructured controllers to those of
nonlinear controllers, control of an inverted pendulum is also con-
sidered as the third platform. For this platform, a nonlinear control
solution according to feedback linearization is available from Ref.
[5] to provide a basis for evaluating the restructured controller’s
performance against that of a nonlinear controller.

3.1 Nonlinear Actuator. The first platform, adopted from
Ref. [2], is shown in Fig. 3 where the plant consists of a nonlinear
actuator, preceded by a linear process. The customized controller
discussed in Ref. [2] is a PI controller with the parameters
Kp¼ 0.1 and Ti¼ 0.1 cascaded with a nonlinear function that
approximates the inverse of the actuator model. The nonlinear
actuator model, the transfer function of the process, and the
inverse actuator model used in Ref. [2] are shown in Table 1.

As discussed in Ref. [2], and shown in Fig. 4, the above closed-
loop system generates different responses at different reference
values, representing the limitation of the inverse approximationbf �1

in neutralizing the actuator nonlinearity f(u) at different refer-
ence values. A drawback of this solution, therefore, is rooted in

the deviation of f ðbf �1ðcÞÞ from the ideal value of 1 at different
reference values, except at r¼ 1 where the inverse function is
exact and the response obtained is desired. Another drawback of
this solution is its dependence on the accuracy of the modeled
nonlinearity. To evaluate the significance of this dependence, the
closed-loop step responses of the system at different reference val-
ues are compared in Fig. 5 with the step responses of two
other systems representing slightly different actuator nonlinearities:
f(u)¼ u3.5 and f(u)¼ u4.5. The results clearly indicate the consider-
able influence of misrepresented nonlinearity on the responses of
the customized solution, particularly at higher reference values.

3.2 Inverted Pendulum on a Cart. The second platform,
obtained from Ref. [23], is the classical inverted pendulum on a
cart, as shown in Fig. 6 and modeled in Table 2. In this model,
x(t) denotes the position of the cart in the x direction, h(t) denotes
the angle of the pendulum from vertical, and u(t) is the force
applied to the cart. This model was simulated with the cart mass
m0 ¼ 0:9 kg, the pendulum mass at the end of the massless rod
represented as m¼ 0.1 kg, and the pendulum length represented as
l¼ 0.235 m.

Fig. 3 Block diagram of the first platform, consisting of a linear
plant actuated by a nonlinear valve (Adapted from [2])

Table 1 Models of the individual blocks [2] in Fig. 3

Nonlinear actuator v ¼ f ðuÞ ¼ u4

Process G0ðsÞ ¼ 1

ðsþ1Þ3

Inverse model
f�1ðcÞ ¼ 0:433c if 0 � c < 3

0:0538cþ 1:139 if 3 � c � 16

�

Fig. 4 Step responses and control efforts of the closed-loop
customized solution in Fig. 3 at different reference magnitudes

Fig. 5 Effect of modeling inaccuracy on the step responses
and control efforts of the closed-loop solution in Fig. 3
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The feature of interest to our study in this platform is the effec-
tiveness of restructured controller in coping with plant nonlinear-
ity beyond angles regulated by the linear controller. At small h
values, like those caused by low magnitude impulses to the pendu-
lum, a linear controller, by state feedback, for example, can main-
tain the upward position of the pendulum. But the prevalence of
nonlinearity at larger h values will disturb the performance of lin-
ear control. This point is illustrated for a linear state-feedback
controller of the form uðtÞ ¼ �K1x� K2 _x � K3h� K4

_h with the
gains [K1, K2, K3, K4]¼ [�2.00, �3.84, 33.84, 7.22] locating the
closed-loop poles at s1,2,3,4¼�1, �2, �4.73, �4.73 according to
the linearized model of the pendulum. The closed-loop impulse
responses of the pendulum to different impulse magnitudes
applied to the pendulum using this controller are shown in Fig. 7.
They clearly indicate the effect of nonlinearity on the performance
of the linear controller at higher impulse magnitudes.

3.3 Inverted Pendulum. The model of the inverted pendu-
lum and the nonlinear controller developed by feedback lineariza-
tion in Ref. [5] are shown in Table 3. In this model, u is the input,
a ¼ ðx=XÞ2 ¼ 1; x2 ¼ mgl=ðJ þ ml2Þ is the oscillation fre-
quency, J is the moment of inertia of the pendulum, and X is a
nominal value of x.

4 Restructured Controllers

Controllers were restructured by MSAM for the three plat-
forms according to the configuration in Fig. 1. The desired
response yd used for the nonlinear actuator was the step
response of a standard second-order model, the one for the
inverted pendulum on a cart was the impulse response of the
linear controller to the lowest magnitude impulse (d¼ 15 N)
applied to the pendulum, and the one for the inverted pendu-
lum was an exponentially decayed response of the linear con-
troller. The coupling functions bf i in Eq. (3) for the first and
second platforms were the absolute values of the state varia-
bles, to avoid imaginary numbers due to exponentiation of
negative numbers, and for the third platform were the sine and
cosine of the state variables. The restructured controllers
obtained for the above platforms are discussed separately.

4.1 Controller for the Nonlinear Actuator. A feature of
restructured controllers is their case specificity, which is rooted in
the search mechanism for the exponents ci in Eq. (3). As in any
gradient-based search, the robustness of the solution and its form
depend not only on the convexity of the error surface presented
during training, but also on the search mechanism (nonlinear least
squares, in this case). As such, the choice of the desired response
yd plays a central role in the formulation of the solution. It is
observed, for instance, that the more distant is the target from the
initial closed-loop response, the better chance there is of finding a
radically restructured controller. For case specificity of restruc-
tured controllers, consider the controllers obtained at different ref-
erence magnitudes for the nonlinear actuator in Table 4. Here we
arbitrarily used the step response of a standard second-order
model (f¼ 1, xn¼ 0.17) as the desired response and the PI con-
troller: Kp�ðtÞ þ Ki

Ð
�ðtÞdt as the initial controller amended with

the functions ½f1; f2� ¼ ½j�j; j
Ð
�dtj� in Eq. (3) for its restructuring.

Each candidate controller was adapted for 15 iterations in the
round robin phase and the best controller was further adapted for
20 more iterations in the final phase. Although the forms of the
restructured controllers in Table 4 are the same for reference mag-
nitudes of 1, 2, and 4, in one form, and for reference magnitudes
of 3 and 5, in another form, they are not uniform across all refer-
ence magnitudes.

Fig. 6 Inverted pendulum on a cart used as the plant in the
second study platform

Table 2 Model of the inverted pendulum on a cart from
Ref. [23]

€x ¼ uþ ml sinðhÞð Þ _h2 � mg cosðhÞsinðhÞ
m0 þm� m cos2ðhÞ

€h ¼ u cosðhÞ � ðm0 þ mÞg sinðhÞ þ ml cosðhÞsinðhÞð Þ _h
ml cos2ðhÞ � ðm0 þ mÞl

Fig. 7 Closed-loop impulse responses (y 5 h) and control
efforts of the inverted pendulum on a cart controlled by linear
state feedback. Impulse magnitudes are in newton.

Table 3 Model of the inverted pendulum and nonlinear control-
ler by feedback linearization from Ref. [5]

Model _x1 ¼ x2; _x2 ¼ aðsin x1 þ u cos x1Þ
Controller u ¼ 1

cos x1

�sin x1 � K2ðx1 þ x2Þ½ �

Table 4 Restructured controllers obtained at different refer-
ence values for the nonlinear actuator

Reference value Restructured controller

1 Kp� j
Ð
�dtj

� �0:27 þ Kisgnð
Ð
�dtÞðj

Ð
�dtjÞ0:80

2 Kp�ðj
Ð
�dtjÞ0:19 þ Kisgnð

Ð
�dtÞðj

Ð
�dtjÞ0:82

3 Kpsgnð�Þj�j1:15 þ Kisgnð
Ð
�dtÞðj

Ð
�dtjÞ0:81

4 Kp�ðj
Ð
�dtjÞ0:15 þ Kisgnð

Ð
�dtÞðj

Ð
�dtjÞ0:78

5 Kpsgnð�Þj�j1:08 þ Kisgnð
Ð
�dtÞðj

Ð
�dtjÞ0:78
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To ameliorate their uniformity, restructuring of the controller
for the first platform was performed with a staircase reference pro-
file that included three reference magnitudes, as shown in Fig. 8.
Controller restructuring resulted in

uðtÞ ¼ Kp�þ Ki

ð
�dt

� 	
) uðtÞ ¼ Kp�ðtÞ

���� ð �ðtÞdt

����
 !0:04

þ Kisgn

ð
�ðtÞdt

� 	 ���� ð �ðtÞdt

����
 !0:80

(9)

with its response named “restructured” in Fig. 8. The response of
the restructured controller is compared in Fig. 9 with those of the
initial (PI) and customized (PI controller cascaded with the
inverse model of the actuator) controllers. The results indicate
more consistent rise times of the initial and restructured control-
lers than the customized controller. They also indicate the far
smaller overshoot of the restructured controller than the initial
controller’s, as the result of restructuring toward the desired
response.

As discussed earlier, an important feature of MSAM is the use
of dMi in Eq. (5) for scaling the columns of Uc in Eq. (6). A direct
ramification of this scaling is ought to be the better quality of Uc,
that results in improved estimates of cDC when used in Eq. (7).
The quality of Uc is illustrated by the range of condition numbers
(kmax/kmin) of Uc in Table 5, computed with and without scaling

by dMi at different reference magnitudes with the nonlinear actua-
tor. Since the closer is the condition number to unity the more sep-
arate (less collinear) are the columns of the matrix [24], the
smaller condition numbers in Table 5 for Uc when scaled by dMi

should result in improved restructured controllers. This is verified
by the smaller lowest absolute output error sums in Table 5
obtained during adaptation by scaling. Supported by these results,
the solutions shown henceforth are obtained with scaled Uc.

4.2 Controller for the Inverted Pendulum on a Cart. For
the inverted pendulum on the cart, the candidate controllers were
generated from the state feedback controller K1xþ K2 _x þ K3hþ
K4

_h using ½f1; f2; f3; f4� ¼ ½jxj; j _xj; jhj; j _hj� in Eq. (3). To invoke the
nonlinearity of the pendulum, an impulse magnitude of d¼ 18
(see Fig. 7) was applied to the cart, using the closed-loop response
of the linear controller to an impulse magnitude of d¼ 15 as the
desired response. Each candidate controller was adapted for 15
iterations in the round robin phase and the best controller was
adapted for 50 iterations in the final phase. The restructured con-
troller had the form

uðtÞ ¼ �K1xðtÞ � K2 _xðtÞ � K3hðtÞ � K4
_hðtÞ )

uðtÞ ¼ �K1xðtÞj _hðtÞj0:04 � K2 _xðtÞj _hðtÞj0:02 � K3sgnðhðtÞÞjhðtÞj0:92

� K4sgnð _hðtÞÞj _hðtÞj1:03 ð10Þ

The responses and control efforts of the restructured and linear
controllers at the impulse magnitude of d¼ 18 are shown in
Fig. 10 along with the desired response. They indicate the more
rapid response than its linear counterpart of the restructured con-
troller in stabilizing the pendulum.

As benchmark, the impulse responses of the inverted pendulum
on a cart with the restructured controller (Eq. (10)) are compared
with those of the linear controller at different impulse
magnitudes in Fig. 11. Both the responses and control efforts of
the restructured controller are significantly more robust than those

Fig. 8 Step responses and control efforts of the restructured
and initial (PI) controllers from the first platform shown with the
desired response used for controller restructuring

Fig. 9 Step responses of the initial and restructured control-
lers and their control efforts from the first platform at different
reference magnitudes as well as those of the customized con-
troller in Fig. 3

Table 5 Range of condition numbers of the structural sensitiv-
ity matrix Uc and the lowest absolute output error sum found
during controller restructuring of the first platform with and
without scaling of Uc by dMi from Eq. (5)

Condition number of Uc Lowest error (min
PN

i¼1 jeyðtiÞj)
Reference
Magnitude Unscaled Scaled Unscaled Scaled

1 1.61–12.16 2.02–2.07 2.61 1.35
2 1.69–6.95 1.80–2.68 4.37 2.50
3 2.13–4.94 1.07–4.69 6.10 2.65
4 10.03–14.05 1.09–2.67 8.18 3.99
5 13.37–13.53 1.09–4.48 11.38 6.10

Fig. 10 Impulse responses and control efforts of the linear and
restructured controllers from the inverted pendulum on a cart
(second platform) shown with the desired response used for
controller restructuring
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of the linear controller at different impulse magnitudes. This
robustness is due in part to the quicker response of the restruc-
tured controller to state changes in the system, providing the
capacity to cope with impulses of higher magnitude, as discussed
in Sec. 5.

4.3 Controller for the Inverted Pendulum. For the inverted
pendulum, the desired closed-loop response was set as yd ¼
yline�t with ylin being the closed-loop response of the linear con-
troller. The candidate controllers were generated from the linear
controller: u ¼ �K1x1 � K2x2, yielding the restructured controller
of the form

u ¼ �K1x1j cos x1
�0:2332j � K2x2j cos x1

�0:2104j (11)

The stabilizing responses of the linear and restructured controllers
and their control efforts to an initial pendulum displacement are
shown in Fig. 12. The restructured controller response indicates
that the desired response cannot be achieved in this case and that
not much improvement is attained by restructuring the linear con-
troller. However, as will be illustrated later, this controller proves
to be considerably more robust than the linear controller in
response to larger initial displacements.

5 Analysis

The case study results obtained can be used to analyze several
aspects of the restructured controllers by MSAM. One such aspect
is the response of the restructured controllers to conditions absent
in training, such as measurement noise, disturbances, and refer-
ence magnitudes beyond those used for training. A second aspect

is the sensitivity of the restructured controllers to training condi-
tions. A third aspect is the form and behavior of restructured com-
ponents of the controllers in comparison to their initial
counterparts.

5.1 Unrepresented Conditions. To evaluate the performance
of restructured controllers in the presence of noise, band-limited
noise at the signal-to-noise ratio of 18 (at r¼ 1) to 33 (at r¼ 5)
was added to the output of the plant in the nonlinear actuator plat-
form. Controller responses were tested ten times for different ran-
dom noise cases, as shown in Fig. 13. The results indicate
similarly affected closed-loop responses by measurement noise of
both the restructured and customized controllers with smaller var-
iations observed in the control efforts.

The disturbance rejection capacity of the controllers was eval-
uated in platform one with unit step disturbances applied before
and after the plant G0(s) in Fig. 3. The closed-loop responses of
both the restructured and customized controllers are shown in Fig.
14. The results indicate much more agile disturbance rejection by
the restructured controller at higher reference magnitudes, repli-
cating the faster step response of these controllers at higher refer-
ence magnitudes in Fig. 9.

To evaluate the controllers’ regulation capacity of the first plat-
form for levels not encountered in training, the closed-loop step
responses of the restructured controller are compared to those of
the customized controller at step sizes of 6–15 for the nonlinear
actuator in Fig. 15. The results indicate that the restructured con-
troller starts having oscillatory behavior at step sizes of nine and
higher, while the customized solution provides continually
increasing sluggish response at these higher steps. Similarly, the
closed-loop impulse responses of the inverted pendulum on a cart

Fig. 11 Impulse responses and control efforts of the linear and
restructured controllers from the inverted pendulum on a cart
at impulse magnitudes of 15–20

Fig. 12 Stabilizing responses of the inverted pendulum (third
platform) and the corresponding control efforts by the initial
(linear), feedback linearized, and restructured controllers to an
initial displacement shown with the desired response used for
restructuring

Fig. 13 Closed-loop step response and control effort ranges
of the first platform by restructured and customized controllers
in presence of additive band-limited measurement noise at the
approximate signal-to-noise ratios of 18 at r 5 1–33 at r 5 5

Fig. 14 Closed-loop responses and control efforts of the first
platform by restructured and customized controllers to unit
step disturbances before G0(s) in Fig. 3 (at time 100) and after
G0(s) (at time 200)
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with the restructured and linear controllers were obtained at
impulse magnitudes of 21–33. The linear controller was found to
be deficient in maintaining upward position for the pendulum for
impulse magnitudes of 27 and higher. The responses obtained
with the restructured controller for impulse magnitudes of 27–33
are shown in Fig. 16. The results in Fig. 16 reveal the ability of
the restructured controller in maintaining a stable response under
conditions beyond the capacity of linear control.

Consistent with these results are those obtained for the third
platform. Shown in Fig. 17 are the responses and control efforts of
the linear, restructured, and feedback linearized controllers for the
inverted pendulum to a larger initial displacement of h0¼ 1.4 rad
than that used for restructuring (h0¼ 1 rad). The results clearly
indicate the robustness of the restructured controller in regulating
the inverted pendulum, on par with the feedback linearized con-
troller, and far superior to that of the linear controller.

Also of interest is the robustness of the restructured controllers
to modeling uncertainty. To evaluate their robustness, the closed-
loop responses for the nonlinear actuator platform were generated
first with the actuator nonlinearities of f(u)¼ u3.5 and f(u)¼ u4.5,
as shown in Fig. 18. The responses of the restructured controller
in Fig. 18 are quite similar, unlike those of the customized con-
troller, even though the controller was restructured for the nomi-
nal actuator model of f(u)¼ u4.0. The similarity of these responses
indicates the robustness of the restructured controller to modeling
uncertainty of actuator nonlinearity. Second, closed-loop
responses of the inverted pendulum on a cart were obtained with
10%, 20%, and 30% smaller pendulum mass with the linear and
restructured controllers, as shown in Fig. 19. The responses with
the restructured controller in Fig. 19 are very close for different
pendulum masses, particularly in comparison to those with the

linear controller. They, like those for the nonlinear actuator, indi-
cate the lower sensitivity of the restructured controllers to model-
ing uncertainty.

5.2 Sensitivity to Training Conditions. As was discussed
earlier and depicted by the controller forms in Table 4, the train-
ing conditions influence the controller forms. For the first plat-
form, sensitivity to training conditions was remedied by adopting
a staircase format for restructuring the controllers for the nonlin-
ear actuator. It, therefore, behooves us to examine the sensitivity
of the controller forms to different staircase scenarios. Similarly,
the restructured controller for the inverted pendulum on a cart was
obtained at one impulse magnitude (d¼ 18). So, it raises the ques-
tion as how the controller forms differ at different impulse magni-
tudes. To this end, the controller forms obtained for the nonlinear
actuator and inverted pendulum from different training cases are
shown in Table 6. The results indicate two controller forms found
across the ten different staircase combinations (e.g., 1, 2, 3; 1, 3,
5; 2, 3, 4; etc.) for the nonlinear actuator and three controller
forms for the inverted pendulum at three different impulse magni-
tudes. The difference between the controller forms for the nonlin-
ear actuator is in the first component wherein the � is coupled with
itself, in the first case, and with its integral, in the second case.
The restructured controller forms for the inverted pendulum on a
cart, however, are quite diverse and can be compared better
through their simulated behavior, as presented below.

5.3 Controller Components. The different forms obtained
for the restructured controllers raise two important questions: (1)

Fig. 15 Closed-loop responses and control efforts of the first
platform by restructured and customized controllers at higher
step sizes (6–15) than those (1–5) used for restructuring

Fig. 16 Closed-loop impulse responses and control efforts of
the inverted pendulum on a cart (second platform) by the
restructured controller (obtained at the impulse magnitude of
20) at impulse magnitudes of 27–33 that are beyond the
capacity of the linear controller

Fig. 17 Stabilizing responses and control efforts of the linear,
restructured and feedback linearized controllers for the
inverted pendulum (third platform) to a higher initial displace-
ment than used for restructuring

Fig. 18 Step responses and control efforts of the first platform
by restructured and customized controllers (Fig. 3) as affected
by inaccurate actuator nonlinearities
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how different are the individual components of the controller
from each other in different forms and from their counterparts in
the initial controller? and (2) how differently do they contribute to
the total control effort? To address these questions, the numerical
values of the individual components in Table 6 were obtained
from simulation, as shown in Fig. 20 for the nonlinear
actuator and in Fig. 21 for the inverted pendulum on a cart. The
results in Fig. 20 indicate that the proportional effect
“Kpsgnð�ðtÞÞj�ðtÞjðc1þ1Þ

” provides a smaller portion of the overall
effort than “Kp�ðtÞj

Ð
�dtÞjc1 ,” and that it has a nonzero initial

value because of its entire dependence on the “�(t).” Its counter-
part, however, is initially null due to its dependence on “

Ð
�dt”

before it rises rapidly to its maximum value. The integral compo-
nents, which have the same form, only differ slightly due to differ-
ences in the magnitude of

Ð
�dt in the two simulation runs.

The results in Fig. 21, however, show a much more nuanced
difference of the controller components. They differ not only in
form but also in coefficient and exponent values. For instance,
consider the similarity in form “x effort” of the restructured con-
troller at the impulse magnitudes of d¼ 18 and d¼ 20, simulated
in the first row of Fig. 21 (columns 1 and 3). Despite their identi-
cal form, their behavior is more different from those at d¼ 18 and
d¼ 19 (columns 1 and 2), that are different in form. This differ-
ence is presumed to be attributed to the confluence of the other
components. Another observation of interest from Fig. 21 is the
similarity between the total control efforts, shown in the last row
of this figure, despite the very different behavior of individual
components.

6 Discussion

� Stability: As with any controller design, of concern is the sta-
bility of the closed-loop systems with restructured control-
lers. Fortunately, a fundamental benefit of the proposed
restructuring format, as schematized in Fig. 1, is its intrinsic
evaluation of the candidate controllers in simulation. Since
MSAM is designed to produce a controller that is at least bet-
ter than the initial controller, it disregards any candidate con-
trollers that are inferior in performance to other candidate
controllers or the initial controller. Given that the instability
of the system is a natural criterion in this performance evalu-
ation, the solutions delivered by MSAM are guaranteed to be
closed-loop stable within the bounds of simulation incorpo-
rated in restructuring. Outside these bounds, analysis such as
that presented in Sec. 5.1 can be used to identify instabilities
unrepresented during restructuring. Analytical approaches to
stability can also be used though they are outside the breadth
of present study.

� Reachability: In general, MSAM is additive by nature,
designed to adapt a potentially inadequate initial controller
by adding coupling to its individual components. Accord-
ingly, this method is suited to restructuring initial controllers
that are simple in form, as the restructured controllers are
guaranteed to be more complex than their initial version.
Furthermore, MSAM operates with the assumption that a
potentially superior restructured controller is reachable by
prescribed adjustments to the components of the initial con-
troller. To this end, the selection of the adjustments bf i in Eq.
(3) is of paramount importance.

� Scalability: The scalability of MSAM depends on the num-
ber of candidate controllers considered during the round
robin phase. Given that with n adjustments applied to Q com-
ponents, Qn candidate controllers need to be examined dur-
ing the round robin phase, the selection process can become
overwhelming if the controllers are examined sequentially.
Fortunately, the examination of individual candidate control-
lers is independent of the others; therefore, this phase can be
run in parallel, reducing the computation time to Qn/p, with p
denoting the number of processors. For large-scale problems
that cannot be exhaustively searched, one can choose a sub-
set of round robin controllers that are mechanistically
plausible.

� Algorithmic issues: As with any other gradient-based search
routine, the search process may be sensitive to several
parameters. One such parameter is the size of the perturba-
tion dci in Eq. (5) used for computing the structural sensitiv-
ities. Another is the initial value of l in Eq. (8) that is
adjusted at each iteration step. A third parameter is the per-
turbation size of the individual parameters used for

Fig. 19 Closed-loop impulse responses and control efforts of
the restructured and linear controllers for the inverted pendu-
lum on a cart with inaccuracies of 0%, 10%, 20%, and 30% in the
pendulum mass

Table 6 Restructured controllers obtained from different stair-
case scenarios for the nonlinear actuator and at different
impulse magnitudes for the inverted pendulum

Restructured controller
Step sizes Nonlinear actuator
1, 2, 5 Kpsgnð�ðtÞÞj�ðtÞjðc1þ1Þ þ Kisgn

Ð
�dt

� �
j
Ð
�dtjðc2þ1Þ

All others Kp�ðtÞj
Ð
ð�dtÞjc1 þ Kisgn

Ð
�dt

� �
j
Ð
�dt

� �
jðc2þ1Þ

Impulse magnitude Inverted pendulum on a cart
d¼ 18 K1xðtÞj _hðtÞjc1 þ K2 _xðtÞj _hðtÞjc2

þK3sgnhðtÞjhðtÞjc3þ1

þK4sgnð _hðtÞÞj _hðtÞjc4þ1

d¼ 19 K1xðtÞjhðtÞjc1 þ K2sgnð _xðtÞÞj _xðtÞjðc2þ1Þ

þK3sgnðhðtÞÞjhðtÞjðc3þ1Þ

þK4
_hðtÞj _xðtÞjc4

d¼ 20 K1xðtÞj _hðtÞjc1 þ K2 _xðtÞjhðtÞjc2 þ K3hðtÞj _xðtÞjc3

þK4
_hðtÞjhðtÞjc4

Fig. 20 Components of the control efforts of the linear and
restructured controllers with the two forms in Table 6 for the
nonlinear actuator in response to step of magnitudes of 1–5
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computing @by=@H in Eq. (5). Yet a fourth parameter is the
fitness function used to evaluate the candidate models, cur-
rently formulated to consider the size of the error as well as
the correlation of the candidate output with its target. Since
the sensitivity of the search process to these parameters will
depend upon the convexity of the error surface, they need to
be evaluated in the context of each problem.

7 Conclusion

A method of restructuring is introduced for controllers of non-
linear plants. It generates controllers that are intelligible in form,
but more complex than an initial controller that is potentially infe-
rior in performance. This method benefits from a metric for quan-
tifying structural perturbations to controllers, which it uses to
enable its reliable gradient-based adaptation of candidate control-
lers derived from the initial controller. The method is demon-
strated in application to three benchmark problems, rendering
solutions that are more effective in coping with plant nonlinear-
ities and more robust to modeling uncertainties. They are also
found to be more robust to conditions not introduced in
training, including unseen reference magnitudes, noise, and
disturbances.
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