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A novel method of empirical controller design is introduced with the potential to produce
exotic controller forms. The controllers in this method are derived by symbolic regression
(SR) to be in equation form, hence, they are legible in how the controller output is com-
puted as a function of loop variables. Because SR is computationally costly due to its exten-
sive search of controller space, requiring evaluation of millions, if not billions, of candidate
controllers, the candidate controllers cannot be evaluated in closed-loop due to the high
cost of simulation associated with such evaluation. This paper offers a recourse to this
closed-loop evaluation by allowing evaluations to be performed algebraically. To this
end, a method of inverse solution is introduced that estimates the plant input for a desired
plant output. This estimated plant input is then used as the target output for candidate
controllers that can be readily evaluated algebraically based on the available time series
of loop variables associated with the desired plant output. Unlike traditional control design
which relies on closed-loop performance metrics to provide controller performance guar-
antees, the proposed open-loop approach sacrifices such guarantees in favor of new con-
troller forms that it may yield. Therefore, the fidelity, as controllers, of candidate
controllers need to be verified post-design. For this purpose, the candidate controllers
are first evaluated as controllers in closed-loop simulation. Once verified by simulation,
they need to be validated for closed-loop stability, as demonstrated for one of the studied
cases.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Controllers are usually defined for a formulaic plant model (i.e., represented by differential equations) and are analytic.
When plants are linear or can be approximated by linear models, linear controllers of standard form (e.g., lead, lag, or state
feedback) can be considered, with the controller parameters determined according to a design method, such as root locus,
pole placement, or frequency response [1]. For nonlinear plants, nonlinear controllers may be considered and designed using
a method such as feedback linearization, Lyapunov’s direct method, sliding mode, or back-stepping [2–4]. The noted feature
of analytic controllers is their legible form which makes them transparent in how their output is computed in relation to the
controller inputs (see A for the intended definition of controller transparency).

Analytic control, however, has its limitations: (1) it requires an analytic plant model, (2) it needs expertise, especially for
nonlinear controller design, and (3) its form is confined to established controller forms (e.g., state feedback). These limita-
tions have motivated the application of empirical design methods, whereby both the controller structure and its parameters
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are derived through learning. Noted examples of such empirical methods are fuzzy control [5] and neuro-control [6–9]. The
advantage of these controllers is that they can be developed without much control design expertise. Their disadvantage is
their ‘‘black-box” form which offers little insight about their structure. The objective of this work is to rectify the black-
box characteristic of empirically derived controllers, by deriving through learning empirical controllers that are in analytic
form.

To produce legible controllers, we use symbolic regression (SR) [10–12] to derive controllers in analytic form (see B for a
general overview of SR). Briefly, SR represents the time-series associated with loop variables such as the plant states as sym-
bols and integrates them as blocks to form candidate equations that produce as output a time series close to the target out-
put [13]. As such, these equations are transparent in their structure by informing how their output relates to their inputs. If
these equations qualify as controllers, their transparency provides insight into their form, offering the possibility of discov-
ering new controller forms. For instance, an equation found by SR (shown later in Table 1) defines the controller output u as
u ¼ �3:6630e3 _xþ _x2

� �
, where _x denotes the velocity. Despite its empirical basis, the controller is transparent in how its out-

put is computed. The objective of this paper is to make controller design by symbolic regression possible.
Ideally, the SR search, free of restrictions in form/structure, can be conducted by genetic programming (GP) for equations

that tested as controllers generate closed-loop outputs close to a target output. However, SR is computationally demanding,
requiring anywhere from millions to billions of evaluations. If the candidate controllers were to be evaluated for their per-
formance in closed-loop, as traditionally conducted in empirical controller design, then each evaluation would require a
time-consuming closed-loop simulation. But it is unfeasible to conduct so many simulation-based evaluations of candidate
controllers during a genetic search, rendering closed-loop evaluation of candidate controllers impractical. Because of this
computational impediment, the use in controls of evolutionary and/or genetic algorithms has been confined to parameter
optimization [14,15] or search among a limited number of structural components [16–18], leaving unexplored the true ben-
efit of SR in unrestricted search of controller forms.

An alternative to time-consuming closed-loop evaluation of candidate controllers by simulation is algebraic evaluation,
which can be much more rapidly obtained. Such algebraic evaluation would be possible if the desired plant input were avail-
able to use as target for the candidate controller output. But, even with the availability of the desired plant input, and deriva-
tion of the candidate controllers by SR, it remains to be determined, as a fundamental hypothesis, whether such candidate
controllers designed in open-loop would function as controllers in closed-loop. The paper examines this hypothesis by (1)
offering a method of inverse solution to provide the plant input for a desired plant output, (2) deriving candidate controllers
by SR, and (3) evaluating the performance of these candidate controllers in closed-loop. The above strategy is illustrated in
Fig. 1.

As to the inverse solution, the first contribution of this work (termed ‘‘Input Estimation” in Fig. 1 and elsewhere in the
paper), it is trivial for a linear plant since it can be computed using the discrete-time transfer operator of the plant as a dif-
ference equation. It incorporates the target output in the auto-regressive part so as to compute the plant input from the mov-
ing average part. For a nonlinear plant, however, the solution requires a second phase, which also relies on the linearized
model of the plant. In the first phase, as for the linear plant, the approximate input to the linearized model of the plant is
obtained with the desired output as the target. In the second phase, this input is adapted in a method akin to iterative learn-
ing control (ILC) [19,20] toward an input that renders the target output by the nonlinear plant.

Once the desired/target plant input becomes available, the potential controller can be constructed by SR to yield as its
output the estimated plant input. SR uses the space of plant states and inputs as time-series to search for this potential con-
troller (see Fig. 1). For SR, we use Epigenetic Linear Genetic Programming (ELGP) [21–24] which is developed to yield concise
models. Equations that yield as output the target plant input (representing the inverse solution to the desired plant output)
may qualify as controllers and will be tested via simulation in closed-loop.

We present the results from application of the proposed SR-Based Controller Design (SRBCD) method to three nonlinear
plants. The results not only affirm the fundamental hypothesis of the study by confirming the efficacy of controllers gener-
ated by the SRBCD method, they provide valuable insight about the choice of variables to be included in SR to render an
effective controller form for closed-loop operation. These results are, therefore, significant in not only validating the pro-
posed method but also affirming the possibility of controller design in open-loop, whereby controllers can be designed with
the objective of producing as output the desired plant input. Even though the proposed method of open-loop controller
design, together with its input estimation, is examined and validated with controllers derived by SR, the open-loop design
strategy, in and of itself, ought to be considered the main contribution of the present work. The justification for this claim is
rooted in the paper’s finding that controllers can be designed in open-loop to target the desired plant input. Such a strategy
may be implemented, independent of SR, with any design strategy, including linear regression.

The paper is organized as follows. The input estimation method, which is an integral part of the proposed open-loop con-
troller design strategy, is discussed in Section 2. A brief description of ELGP, which is an efficient method of search developed
by the authors for creating concise dynamic models [23,24], is presented in Section 3. Section 4 presents the results from the
application of the proposed method to three nonlinear plants, selected for the various challenges they pose to controller
design. Some of the controllers presented in this section manifest the uniqueness of controller forms derived by SR, poten-
tially unattainable by traditional design techniques. A necessary step to open-loop design, is stability analysis. An example of
such analysis is provided in Section 5 for one of the studied cases via loop gain describing functions. Discussion of the results,
future work, and conclusion are discussed in Sections 6–8, respectively.
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Fig. 1. The sequence of input estimation and controller construction in the proposed method. The plant input is first estimated for a desired output. This
input is then used as the target of symbolic regression for finding candidate equations to be tested as controllers in closed-loop.

Table 1
Sample controller equations found by ELGP for the active nonlinear suspension system.

Gc1 : u ¼ � _x 5:3985e4xþ 4:8533e3 _xþ 463:59
� �

Gc2 : u ¼ 3:4242� 4:5455e4x _x� 4:8780e3 _xþ 0:1459ð Þ _x
Gc3 : u ¼ �3:6630e3 _xþ _x2

� �
Gc4 : u ¼ �3:39e3 _x
Gc5 : u ¼ 7:7156e3 sin _x 2xþ _xþ 0:2042ð Þ
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2. Plant input estimation

Estimation of plant input for a desired plant output, commonly referred to as inverse modeling [25], is generally hindered
by non-minimum phase characteristics and nonlinearities [26]. We avoid here the construction of an inverse model [27] and
focus instead on estimating the input (i.e., the inverse solution) alone, independent of the inverse model that would generate
it. To this end, we rely on the discrete-time model of the plant as a difference equation.

Consider the transfer operator of the linear plant or of the linearized model of the nonlinear plant, as
3
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y kð Þ
u kð Þ ¼

B qð Þ
A qð Þ ¼

b1q�1 þ b2q�2 þ � � � bmq�m

1þ a1q�1 þ a2q�2 þ � � � anq�n ð1Þ
where q is the forward shift operator. Then, the above model can be used as a difference equation to estimate the input
sequence for a desired/target output sequence yd kð Þ; k ¼ 1; . . . ;N, as
bu k�mð Þ ¼ 1=bm yd kð Þ þ
Xn
i¼1

aiq�iyd kð Þ �
Xm�1

i¼1

biq�ibu kð Þ
" #

ð2Þ
By indexing k from nþ 1 to N, one at a time, one can obtain an estimate of the input bu lð Þ for l ¼ nþ 1�m; . . . ;N �m,
where bu kð Þ ¼ 0 8k < nþ 1�m. It should also be noted that this method is only applicable to a forced response, since it
assumes that any output yd is caused by a corresponding input sequence. As such, yd cannot be due to any initial conditions.

The application of this input estimation method to a linear plant is trivial as well as effective. Its utility in estimating the
inputs to nonlinear plants, however, requires two phases, as shown in Fig. 2. In the first phase, as for the linear plant, an ini-
tial input is estimated based on a linearized model of the nonlinear plant. But given that this estimated input bu lð Þ would not
render the target output by the nonlinear plant, one would need to adapt it toward the inverse solution u� lð Þ that renders the
target output by the nonlinear plant. If one considers the current nonlinear plant output yj kð Þ; k ¼ 1; . . . ;N by some input

uj kð Þ; k ¼ 1; . . . ;N, as yj ¼ f uj
� �

, and the target output yd, as yd ¼ f u�ð Þ, and consider a first order approximation of the target
output as
yd � yj þ
@f uð Þ
@u

duj � yj þ
@y
@u

duj ð3Þ
where duj denotes the input error, then the error, �j kð Þ ¼ yd kð Þ � yj kð Þ, between the target and current output will have the
form
Illustration of input estimation for a nonlinear plant in the proposed method. The input is first computed based on the linearized model of the plant.
put of the nonlinear plant, by this computed input, is then matched against the target output for computing the error. This error is then used for
g the input according to Eq. (6). The new plant output is computed by this input and adaptation continues as in the previous step until the error has
hed according to a threshold.

4
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�j �
@y
@u

duj ð4Þ
Now if we consider the transfer operator in Eq. (1) as a valid approximation of @y=@u, then Eq. (4) can be defined as
�j �
B qð Þ
A qð Þ duj ð5Þ
and the estimation routine (2) can be used to estimate the input error duj, as
cduj k�mð Þ ¼ 1=bm �j kð Þ þ
Xn
i¼1

aiq�i�j kð Þ �
Xm�1

i¼1

biq�icduj kð Þ
" #

ð6Þ
This input error estimate duj can then be used in the iterative input adaptation routine
bujþ1 lð Þ ¼ buj lð Þ þ kpcduj lð Þ; kp 2 0 0:2½ � ð7Þ
toward the desired output yd until an error limit
PN

k¼1 �j kð Þ
� �2

< C can be reached. The adaptation analogy here is that given
the fidelity of the model in Eq. (5), used for updating du in Eq. (6), limj!1uj ¼ u� according to Eq. (7), which translates to
limj!1yj ¼ f u�ð Þ ¼ yd or limj!1�j ¼ 0.

3. Symbolic regression by ELGP

In traditional applications of SR to dynamic modeling, analytical models are developed according to building blocks that
comprise the state variables, inputs, constants (coefficients and exponents), and algebraic functions and operators. Symbolic
regression generally uses genetic programming (GP) to search for the nonlinear differential equations that can fit the obser-
vations [10,28–30]. Classical GP [13] represents the equations by tree structures, although linear representations and others
are also in use such as gene expression programming [31], cartesian GP [32], tree adjunct grammars [33], and grammatical
evolution [34].

Traditional GP tends to generate overly complex or over-fit solutions, which are effectively ‘‘black box” [35]. A related but
not identical problem is bloat, which is the tendency of programs to continue to grow in size with more generations, to the
detriment of the search process [36]. We have developed Epigenetic Linear Genetic Programming (ELGP) [21–24] to effi-
ciently form concise models. ELGP addresses the problem of model conciseness by regulating program expression such that
accuracy and conciseness are optimized. Unlike the aforementioned methods, this regulation of program expression results
in little to no computational overhead compared to traditional GP [21,22].

ELGP introduces several innovations to traditional GP-based symbolic regression. First, building on prior work [37,38], it
uses a stack-based representation in lieu of tree-based representation, as illustrated in Fig. 3. This ‘minimal-syntax’ repre-
sentation allows instructions to be silenced or activated in a genotype without invalidating the program’s ability to execute;
therefore, it eliminates syntactic invalidities due to changes to instructions and variables. Second, ELGP introduces epigenetic
information into GP representation by including an on/off condition on each instruction in an individual’s genotype. Pro-
grams are encoded as post-fix notation linear genotypes by an epigenotype with corresponding on/off values. When evalu-
ated together, the expressed program (candidate equations); i.e., phenotype, is produced by ignoring the instructions that
are turned off. This encoding not only maximizes the flexibility of representation, thereby simplifying the genetic operations,
but also allows for more fine-tuning of genotype expression into phenotypes (i.e., candidate equations). Third, ELGP uses epi-
genetic hill climbing (EHC) as a local adaptation mechanism whereby the epigenotype is modified to improve the expressed
equation. As such, the epigenetic layer introduces flexibility to the expression of a genotype by including unused expressions
as a repository of local solutions to explore in the search space. Lastly, model structure improvements brought about by EHC
Fig. 3. Illustration of stack-based representation in ELGP and its process of generating phenotypes (i.e., candidate equations).
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Fig. 4. Block diagram of ELGP. The typical GP steps are shown on the left. After fitness evaluation and before selection, the population undergoes an
iteration of epigenetic hill climbing, represented by the block on the right.
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are inherited such that the evolutionary process can benefit from local learning. Epigenetic activation and silencing is learned
each generation using a stochastic hill climber and co-evolved with the corresponding genotypes.

The operation steps of ELGP are depicted in Fig. 4. Operation starts with randomly constructed programs (i.e., equations)
that comprise an initial population. The outputs generated by these equations are evaluated for closeness to the target input
within the training data. Depending on the variant of ELGP, the population then undergoes some form of epigenetic adap-
tation (e.g., epigenetic hill climbing). Afterwards, the population undergoes selection, recombination and mutation, as in
standard GP, to produce an updated population. The process repeats until an adequate solution is produced.

The particular features of ELGP that benefit the current application are its efficiency and the conciseness of equations it
develops compared to GP, as demonstrated in application to numerous system identification problems [23,24]. ELGP has
consistently produced smaller models with better estimation performance for systems represented by nonlinear ordinary
differential equations, and in system identification of real-world benchmark problems, industrial processes, population
diversity models [23], and industrial wind turbines [24]. The mechanism responsible for its superior performance is shown
to result from preservation of diversity in the equation forms during optimization, precipitated from the introduction of the
epigenetic layer [21,22].

4. Study platforms

A salient feature of the SRBCD method is its capacity to present novel and exotic controller forms. As such, the potential
value of SRBCD is in application to nonlinear plants, since it is unlikely to render controllers of superior performance to the
linear controllers already available for linear plants. As such, we present here only the results from the SRBCD’s application to
nonlinear plants. Several controllers are developed for each of the three plants. Two of the derived controllers are regulators
and one performs tracking. The first plant is a nonlinear active suspension system representing a minimum-phase system
which requires regulation against road disturbances. The second plant is a linear system with a nonlinear valve that imposes
nonlinearity on the input, for which a tracking controller is designed. The third plant is an inverted pendulum which is non-
minimum phase and requires regulation. The plant models, target outputs, estimation of the plant inputs, the controllers
constructed by ELGP, and the closed-loop performance of these controllers are presented in the corresponding subsections.

4.1. Case I: nonlinear active suspension

The first platform is a nonlinear active suspension as shown in Fig. 5. The controller applies the regulating force f s to min-
imize the effect of road disturbance r. The equation of motion of this system is defined as
mb€xb þ bs _xb � _rð Þ _xb � _rj j þ ks xb � rð Þ1:5 ¼ f s tð Þ ð8Þ
where both the spring and damper are nonlinear elements, with mb ¼ 300 kg, bs ¼ 1000 N s/m, and ks ¼ 20;000 N/m. This
system is intended to test the SRBCD’s effectiveness in regulation of nonlinear minimum-phase systems.

4.1.1. Case I: input estimation
The target output for the nonlinear plant is set to be the impulse response (x tð Þjr tð Þ¼d tð Þ.) of a linear suspension of the form
6



Fig. 5. Schematic of the active suspension system used as the first study platform.

Fig. 6.
impulse
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mb€xþ Bs _xþ ksx ¼ Bs _r þ ksr ð9Þ
with a damping coefficient Bs ten times the damping coefficient of the nonlinear suspension (Bs ¼ 10bs ¼ 10;000 N s/m).
Using this target output in Eq. (2) for the first stage of input estimation, based on the linear model
y kð Þ
u kð Þ ¼

0:4143e�7q�1 þ 0:4120e�7q�2

1� 1:9818q�1 þ 0:9835q�2
which is the discretized transfer operator at the sampling frequency of 200 Hz of the standard transfer function
G sð Þ ¼ 1=mb

s2 þ bs=mbð Þsþ ks=mb
produces the computed input for subsequent adaptation. The zero-phase low-pass filtered computed input is shown in the
left plot of Fig. 6. Whereas this input would generate the target output by the above linear model, it is unsuitable for the
nonlinear model. The much different output from the target output generated by the nonlinear plant with this input is
shown in the right plot of Fig. 6 together with the target output.

It is clear from the pair of outputs in the right plot of Fig. 6 that the response of the nonlinear suspension is far from its
target and adaptation is necessary for finding the correct input to the nonlinear plant. The adapted input (with kp ¼ 0:05 in

Eq. (7) and the adaptation limit of
PN

k¼1j� kð Þj < 50 in Eq. (6)) is shown in the left plot of Fig. 7. This input produces the final
output in the right plot of Fig. 7, shown together with the target output. The final and target outputs are very close, indicating

the success of adaptation. For illustration purposes, shown in Fig. 8 is the change in
PN

k¼1j�j kð Þj during input adaptation.

4.1.2. Case I: controller forms
Next, ELGP was used to find an equation to define the adapted input (as target) in terms of the regressors. In this case, the

only variables available were the position and velocity (x and _x) of the mass mb in response to the adapted input and both
Zero-phase low-pass filtered computed regulating input (left) and the output generated by the nonlinear suspension (right) in response to an
disturbance (r tð Þ ¼ d tð Þ). Also shown on the right is the desired/target response for the nonlinear suspension.
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Fig. 7. The adapted input (left) and output of the nonlinear suspension after adaptation (right), shown with the target output.

Fig. 8. Absolute sum of the error during input adaptation of the nonlinear suspension.
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were used as regressors. The target input for regression and the regressors used by ELGP are shown in the left and right plots
of Fig. 9, respectively. In general, necessary for equation generation is adequate representation of the shape features of the
target (i.e., the estimated plant input) by the regressors. For example, the adapted plant input, shown again as the left plot of
Fig. 9, contains spikes as well as waves. The spikes are represented in the mass velocity alone, but the waves are in both
regressors, represented in the right plots of Fig. 9. Several nonlinear equations were obtained, shown in Table 1, which were
validated in closed-loop as controllers. Two of them contain sinusoidal functions and some (e.g., Gc3 and Gc4 that include only
one variable) have simpler forms than others.

Assuming that the regressors provide an adequate basis for the adapted input, there is a high likelihood that the equation
found by ELGP will not provide a perfect match to the target input. This mismatch will, in turn, result in deviations of the
actual controller inputs, from the regressors, when operated in closed-loop, causing further mismatch between the plant
output and its intended target. It is because of these deviations that the functionality as closed-loop controllers of equations
need to be investigated. Using a closed-loop model similar to the one depicted in the SimulinkTM model of Fig. 10, the equa-
tions developed by ELGP were tested as controllers. The equations in Table 1 produce similar closed-loop plant inputs,
despite their very different forms. For illustration purposes, the closed-loop inputs generated by the controllers in Table 1
are shown in the left plot of Fig. 11, with the corresponding plant outputs shown as the right plots of this figure. The results
are both promising and revealing. They are promising in that equations developed by ELGP can function as controllers. They
are revealing in that they do not perfectly match their counterparts in Fig. 7 in settling time. As discussed earlier, this
8



Fig. 9. Target input (left) and the variables used as regressors (right) by SR for finding the controller for the nonlinear suspension.

Fig. 10. SimulinkTM model for evaluating the controller obtained by SRBCD for the active suspension system.
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Fig. 11. Closed-loop simulated input (left) and output (right) of the nonlinear active suspension in response to impulse disturbances by the controllers in
Table 1.

Fig. 12. Closed-loop simulated input (left) and output (right) of the nonlinear active suspension in response to impulse disturbances by the controller Gc5 in
Table 1 with added output noise.

K. Danai and W.G. La Cava Mechanical Systems and Signal Processing 151 (2021) 107348
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expected deviation is due to not only the inability of ELGP equations in perfectly replicating the estimated plant input, but
also the inevitable deviations of the controller inputs from those used in regression.

To test the noise rejection capacity of these controllers, band-limited white noise was added to the closed-loop output, as
shown in Fig. 10. Shown in Fig. 12 are the closed-loop input (left) and output (right) of controller Gc5 in Table 1 with the
added output noise. The results indicate that the controller can operate with the added output noise.

4.2. Case II: linear system with a nonlinear valve

The second platform is the combination of a linear system and a nonlinear valve, adopted from [39]. The nonlinearity of
the valve f uð Þ and the transfer function of the linear system G0 sð Þ are defined below,
Fi
f uð Þ ¼ u1:35;G0 sð Þ ¼ 1
s3 þ 3s2 þ 3sþ 1

ð10Þ
where the plant output y tð Þ has the form
y tð Þ ¼
Z t

0
f u sð Þð Þg0 t � sð Þds
with g0 tð Þ ¼ L�1 G0 sð Þf g being the impulse response function of the linear component.
To obtain the target output for this system, we first linearized the plant, then designed a PID (proportional + integral +

derivative) controller for the linear system. The closed-loop response of this linear controlled system to a reference was des-
ignated as the target output of the nonlinear plant. The reference and target output are shown in the left and right plots of
Fig. 13, respectively.

4.2.1. Case II: input estimation
As in the previous case, the target output was used to compute the plant input according to Eq. (2), using the linear model
y kð Þ
u kð Þ ¼

1:3377e�4q�1 þ 2:6755e�4q�2 þ 1:3377e�4q�3

1� 2:7145q�1 þ 2:4562q�2 � 0:7408q�3
obtained by discretizing at the sampling frequency of 10 Hz the linearized model of the plant
G sð Þ ¼ 0:6209
s3 þ 3s2 þ 3sþ 1
The computed input is shown in the left plot of Fig. 14, with the corresponding output by the nonlinear plant (denoted as
initial) shown in the right plot, together with the target output. It is clear, from the two outputs in the right plot of this figure,
that the output generated with the computed input is far from its target, requiring adaptation of the plant input.
g. 13. The reference (left) used to generate the target output (right) for the nonlinear valve according to a linear closed-loop control system.
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Fig. 14. The computed and adapted inputs (left) and the initial and final outputs of the nonlinear valve platform after adaptation (right), shown with the
target output.

Table 2
Sample controller equations found for the nonlinear valve by ELGP for tracking.

Gc1 : u ¼ 0:6165R� x2 � sin x2 þ 0:6165Re�R Rþ 0:4238ð Þ þ 0:0589
Gc2 : u ¼ 0:6309Rþ 0:3619
Gc3 : u ¼ 0:3617� x2 � 0:6311ð Þ R� x2ð Þ
Gc4 : u ¼ R Rx2 x2R

2 � Rþ x2
� �

þ 0:3785
� �

= R� x2ð Þ þ 0:6247
� �

� x2 � x2 Rþ 1:54ð Þ
Gc5 : u ¼ � Rþ 0:5721ð Þ x2 � 0:6312ð Þ
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The adapted input according to Eq. (7) (with kp ¼ 0:1 in Eq. (7) and the adaptation limit of
PN

k¼1j� kð Þj < 20 in Eq. (6)) is
shown in the left plot of Fig. 14, together with the computed input. The final output is shown in the right plot of Fig. 14,
together with the initial and target outputs. The results indicate that the final output is virtually the same as the target out-
put and that the adaptation mechanism is effective in finding the correct input for the plant.
4.2.2. Case II: controller forms
Controller forms were obtained for this system using as regressors, the reference input (R) and the second state of the

plant (x2), to exclude the output. The reason for excluding the output as a regressor, in this case, was that ELGP would invari-
ably choose to define the equations in terms of the output alone, and independent of the reference, due to the better con-
formity of the desired plant input with the target output. However, the absence of a reference would leave the controller in
regulation mode and insensitive to tracking. The controller forms found for this plant are shown in Table 2.

The closed-loop plant inputs and outputs using the equations in Table 2 as controllers are shown in the left and right plots
of Fig. 15, respectively, together with the reference. Note that the reference sequence used in the test is different from the
one used for input estimation and SR, to evaluate the controllers’ capacity in tracking. Although the controllers respond to
the reference, they seem to produce more agile outputs than the target output, having shorter transients. There is also some
steady-state error at the magnitudes of 2 and 4, due to the static nature of the equations constructed by ELGP. Here, the defi-
ciency of the controllers in producing the target output in its entirety is because of using the reference in exclusion of the
plant output. The absence of the plant output as a regressor deprives the controller of the potentially desirable output
transients.

It is likely that both deficiencies, namely the steady-state error and the lacking output dynamics, can be resolved by incor-
porating the integral (summation) and/or derivative of the tracking error as additional regressors in ELGP, so as to enable
construction of dynamic equations (controllers). In order to test this hypothesis, dynamic controllers were constructed by
including as regressors the tracking error as well as its integral and derivative. The controllers constructed by ELGP are
shown in Table 3, and their performance is shown in Fig. 16. Except for Gc1 which is a nonlinear controller, the others are
12



Fig. 15. Closed-loop simulated inputs (left) and outputs (right) of the nonlinear valve platform by the static controllers generated by SRBCD in Table 2.

Table 3
Sample controller equations found for the nonlinear valve by ELGP for tracking.

Gc1 : u ¼ 0:6020� tð Þ þ 0:0248
R
� tð Þ þ 0:0744d�=dt � 0:0248 sin2 � tð Þ � 0:0248 sin � tð Þ þ 0:3319

Gc2 : u ¼ 0:0248
R
� tð Þdt þ 0:3211

Gc3 : u ¼ 0:5659� tð Þ þ 0:0249
R
� tð Þdt þ 0:3281

Gc4 : u ¼ 0:5642� tð Þ þ 0:0249
R
� tð Þdt þ 0:0663d�=dt þ 0:3301

Gc5 : u ¼ 0:5678� tð Þ þ 0:0249
R
� tð Þdt þ 0:0498d�=dt þ 0:3288
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all linear controllers comprising proportional, integral and/or derivative components of the tracking error. As hypothesized,
the closed-loop responses contain no steady-state error.

To evaluate the disturbance and noise rejection capacity of these controllers, impulse disturbances and noise were added
to the output. The closed-loop plant input and output by controller Gc2 in Table 2, as a sample, with disturbance and noise are
shown as the left and right plots of Fig. 17, respectively. The results indicate the effectiveness of this controller in presence of
both disturbance and output noise.

4.3. Case III: inverted pendulum

As a study platform, the noted feature of the inverted pendulum is its non-minimum phase characteristic. Furthermore,
its regulation is challenged by the inability to accommodate initial conditions by the input estimation method. The model of
the pendulum considered here has the form [3]
_x1 ¼ x2; _x2 ¼ sin x1 þ u cos x1ð Þ ð11Þ
where x1 represents its angular position and x2 its angular velocity.
To circumvent modeling a desired plant output to an initial displacement, as a natural target output for a regulator, we

consider a desired impulse response of the pendulum as the target output. To model this target output one could design a
regulator and use the regulated response of the pendulum to the impulse as the target response of the plant. Alternatively,
one could consider a reference model to generate the target output. Shown in Fig. 18 are four such target outputs. One target
output is the closed-loop output of the pendulum with a linear controller of the form [3]
u ¼ �3x1 � 2x2
13



Fig. 16. Closed-loop simulated inputs (left) and outputs (right) of the nonlinear valve platform by the dynamic controllers generated by SRBCD in Table 3.

Fig. 17. Closed-loop simulated input (left) and output (right) of the nonlinear valve platform by controller Gc2 in Table 3 in presence of impulse
disturbances and output added noise.
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which assignes the closed-loop poles of �1� j. The second target output is the closed-loop response of the pendulum with a
feedback linearized controller of the form [3]
u ¼ 1
cos x1

� sin x1 � 2 x1 þ x2ð Þ½ �
14



Fig. 18. The disturbance (left) used to generate the target output for the inverted pendulum according to a reference model and three controllers (right).

Fig. 19. The computed input (left) and the output it generates from the nonlinear inverted pendulum (right) relative to the target output.
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The third target output is that of a sliding mode controller with the form [3]
u ¼ �b xð Þ sat x1 þ x2
0:1

� �
; b xð Þ ¼ 2

x2
cos x1

���� ����þ j tan x1j þ 1
and the fourth target output is the response of a linear reference model with the transfer function
H sð Þ ¼ 10
s2 þ 20sþ 100
The target outputs generated by these four different systems are shown in the right plot of Fig. 18, which are in response
to the disturbance input shown in the left plot.
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Fig. 20. The adapted input (left) and final output of the nonlinear inverted pendulum after adaptation (right), shown with the target output.

Fig. 21. SimulinkTM model masking the input disturbance to the controller by a zero constant for simulating the closed-loop response of the nonlinear
inverted pendulum to an initial displacement.

Table 4
Sample controller equations found for the inverted pendulum by ELGP to mimic the response of the linear controller.

Gc1 : u ¼ �35:63 sin 2x1 tð Þ � x2 tð Þ 4x1 tð Þ þ x2 tð Þ � 0:34ð Þ þ d tð Þx1 tð Þ þ d tð Þ � 2:23d tð Þx1 tð Þð Þ x2 tð Þ � 0:38ð Þð Þð
Gc2 : u ¼ 28:61d tð Þ � 100x1 tð Þ � 19:85x2 tð Þ � 18:67d tð Þ2

Gc3 : u ¼ 81:23 sin 0:25x1 tð Þ � 0:12d tð Þ þ 0:25x2 tð Þ þ sin x1 tð Þð Þð
Gc4 : u ¼ 10d tð Þ � 101:06x1 tð Þ � 20x2 tð Þ
Gc5 : u ¼ d tð Þ � 10:34x1 tð Þ � 2x2 tð Þ
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Fig. 22. Closed-loop simulated input (left) and output (right) of the nonlinear inverted pendulum by the controllers in Table 4 in response to an initial
displacement.

Fig. 23. Closed-loop simulated input (left) and output (right) of the nonlinear inverted pendulum by controller Gc4 in Table 4 in response to an initial
displacement with added output noise.
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Fig. 24. Closed-loop simulated inputs (left) and outputs (right) of the nonlinear inverted pendulum by Gc1 in Table 4 and three other controllers in response
to an initial displacement.
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4.3.1. Case III: input estimation
Using as target output the reference model output in Fig. 18, the input was computed according to Eq. (2) with the linear

model
y kð Þ
u kð Þ ¼

0:5e�7q�1 þ 0:5e�7q�2

1� 2q�1 þ q�2
which is the discretized transfer operator at the sampling frequency of 1000 Hz of the transfer function
G sð Þ ¼ 1
s2 � 1
Fig. 25. SimulinkTM model used to simulate the frequency response of the closed-loop system for the nonlinear inverted pendulum.

18



Fig. 26. Loop gain SIDFs of the inverted pendulum with the controllers in Table 4.
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The computed input is shown in the left plot of Fig. 19. As expected, this input, which was obtained by a linearized model
of the pendulum, produces an unstable response from the nonlinear model, as shown in the right plot of Fig. 19.

Adapting the computed input in Fig. 19 according to Eq. (7) (with kp ¼ 0:05 in Eq. (7) and the adaptation limit ofPN
k¼1j� kð Þj < 8 in Eq. (6)) produced the adapted input shown in the left plot of Fig. 20 with an output of the nonlinear pen-

dulum very close to the target output, as shown in the right plot of this figure.

4.3.2. Case III: controller forms
Considering the impulse response as the target output poses an interesting dilemma. The impulse function needs to be

represented as a regressor to symbolic regression to match the target output, yet it is unrealistic to have access to a distur-
bance in practice. The remedy adopted here is to use the impulse for formulating the controller equation, but to not provide
that as an input (by using a zero value) to the controller in closed-loop, as depicted in the simulation model shown in Fig. 21.
The logic here is that although the impulse is needed to model the plant input for the desired impulse response of the pen-
dulum, it is the relationship with the other regressors that is essential for regulating the pendulum.

Using the adapted input in the left plot of Fig. 20 as the target of SR, and the disturbrance d tð Þ (shown in the left plot of
Fig. 18), the position of the pendulum x1 and its velocity x2 as regressors, several equations were obtained by ELGP, as listed
in Table 4. Three of the controllers: Gc2;Gc4, and Gc5 are linear controllers, once one ignores the terms associated with the
disturbance d tð Þ. In fact, two of the controllers: Gc2 and Gc4 are nearly identical in their coefficient values as well, as they
appear to have much larger coefficients than the third linear controller Gc5.

The closed-loop plant inputs and outputs with the controllers in Table 4 in response to an initial displacement are shown
in the left and right plots of Fig. 22, respectively. The effectiveness of the controllers in regulating the pendulum against the
initial displacement gives credence to the logic of masking the impulse originally used for modeling the controllers. It is
interesting to note that the first four controllers Gc1 � Gc4 in Table 4 have almost identical performances, differing consid-
erably from that of Gc5, which has much slower dynamics.

To evaluate the noise tolerance capacity of the controllers, band-limited white noise was added to the output, as shown in
Fig. 21. The closed-loop plant input and output with the added output noise using controller Gc4 in Table 4 are shown in
Fig. 23. The results indicate the controller’s ability to cope with output noise.

As a further evaluation of SRBCD, the closed-loop plant input and output of the pendulum to an initial displacement with
controller Gc1 in Table 4 are compared with their counterparts by the three controllers discussed earlier in Fig. 24. The results
19



Fig. 27. Loop gain SIDFs of the inverted pendulum with controllers designed by linearization, feedback linearization, sliding mode, and the controller Gc1 in
Table 4.
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show the faster response of the closed-loop system with the controller by SRBCD, as dictated by the faster response of the
reference model (see Fig. 18) characterizing its performance.
5. Stability analysis

For illustration purposes, stability analysis is performed on the inverted pendulum for which several controllers are avail-
able for comparison. The input/output (IO) sinusoidal-input describing functions (SIDFs) (see D for further explanation) were
obtained via simulation for the closed-loop systems comprising the controllers of the inverted pendulum in Table 4. To
ensure steady state response, the last twelve cycles of each output were used to compute their Fourier transforms. The mag-
nitude of each IO SIDF was then estimated as the ratio of the peak of the output and input Fourier transforms. For the IO SIDF
phase, the peaks of the last twelve cycles of each input and output sinusoidal time series were located and the phase was
obtained as the average of the phase difference between the IO peak locations.

To estimate the SIDFs approximation of the loop gain for each closed-loop system, a sinusoid was applied as input to the
closed-loop system, and the controller output (u2) and the plant input � (u3 � ¼ r � y) were obtained from simulation, as
shown in Fig. 25. The SIDF for the loop gain L was obtained between the plant input u3 and the controller output u2.

SIDFs were estimated for the loop gain L of the five closed-loop systems comprising the controllers in Table 4. The SIDF
approximations are shown in Fig. 26, indicating the similarity of those associated with controllers Gc1 - Gc4. The SIDF of L
associated with Gc5 is clearly the outlier, as is its closed-loop response in Figure 22. According to the loop gain SIDFs, all five
systems are stable with the first four having infinite gain margins and phase margins of about 100�. The last controller Gc5

provides a much smaller bandwidth (0.5 Hz vs. 20-30 Hz by others), and a very small gain margin.
The staibility of the controllers evaluated by the SIDFs in Fig. 26 would find better context when compared with the SIDFs

of more traditional controllers. To this end, loop gain SIDFs were obtained for the three other (linearized, feedback linearized,
and sliding mode) controllers available for the inverted pendulum [3]. The SIDF estimates of the loop gain L of the closed-
loop systems comprising these controllers are shown in Fig. 27 together with that of the controller Gc1 in Table 4. The L mag-
nitude and phase of the sliding mode controller are are very similar to those of Gc1, having an infinite gain margin and a
phase margin of about 90�. Both the linearized and feedback linearized controllers provide a much smaller bandwidth (as
dictated by placement of the closed-loop poles in their design), providing a phase margin of about 120�, but a gain margin
of 10 db.
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6. Discussion

The two components of SRBCD are input estimation/adaptation and controller construction (see Appendix C for more
details). Some of the issues observed during the implementation of these components are briefly discussed below.

6.1. Plant input estimation/adaptation

The input adaptation strategy proposed here is inspired by ILC [20] which uses a filter to contain the propagation of the
error. Our estimation method, instead, uses the linearized model of the plant for input estimation/adaptation. Although the
two methods differ in the underlying filter they use, they appear to have similar learning dynamics [19]. Some of the
observed issues associated with input estimation are discussed below.

- Difficulty with initial conditions. The premise of computing the input according to Eq. (2) is that the input is the sole
cause of the output. As such, the input estimation method presented here is unapplicable to target outputs that are
affected by initial conditions. Even though we have avoided the use of initial conditions in input estimation (for instance,
by using an external disturbance to generate the target output for the inverted pendulum), initial conditions cannot
always be avoided. A case in point is when the model is linearized about a non-zero operating point., as in magnetic levi-
tation [3], for example, where the operating point constitutes the initial condition for the model and a cause of the output.
While we expect coordinate transformation to provide a remedy in such cases, we have not yet examined its applicability
in SRBCD.
- Choice of the target output. To define any target output for the plant and find the input that would generate it seems
too good to be true. Intractable outputs would often result in unreasonable inputs with either large magnitudes or shapes
that are difficult to match by equations in terms of the available regressors. As such, a search for the suitable target output
may need to be conducted before one is chosen.
- Sensitivity to sampling frequency. Although we have not performed a thorough investigation of the effect of sampling
frequency, we have observed its adverse effect on input convergence when selected too low.
- Sensitivity to the adaptation gain kp. The success of the adaptation routine (7), similar to nonlinear least squares that
also relies on a first-order approximation, depends upon the convexity of the error surface with respect to the input. As
such, the convergence rate of input adaptation is dependent on the correction size, as dictated by the magnitude of kp.
Although we have not performed a methodical study of its effect, we have found larger kp values to derail input
adaptation.

6.2. Controller construction

The equations by ELGP are in terms of a number of variables, obtained in open-loop, to match a target (plant input).
Therefore, the ability of ELGP to define an equation for the plant input in terms of the regressors depends on not only the
regressors but also the functions available to regression. Furthermore, those equations are successful as controllers which
have as inputs the variables that efficiently guide the control objective; i.e., regulation or tracking. Some of our observations
are discussed below.

- Ability to duplicate the plant input. The quality of equations generated by ELGP is evaluated by a fitness measure. Fit-
ness is defined in our study in terms of shape conformity of each equation’s output to its target (plant input), quantified
by the correlation coefficient and the sum of the errors between them. There are cases, however, that despite a high fit-
ness measure of, say, 0.98, one finds the said equation deficient in producing the target output. An example of such a case
is shown in Fig. 28, where the difference between the equation’s output and its target at the initial stage of the cycle
makes the equation ineffective as a controller.
- Choice of regressors. The regressors, apart from their role as the basis of equations, ought to be suitable inputs to the
controller in closed-loop. As such, it may be necessary to exclude similar-shape regressors that may end up replacing nec-
essary closed-loop controller inputs. The case in point is the set of regressors selected for the nonlinear valve platform.
There we chose to exclude the plant output as a regressor, because it happened to replace the reference input, due to its
better agreement with the shape of the plant input. But not having the reference input available to the controller made it
oblivious to it, hence, dysfunctional as a tracker. Aside from this rationale for selecting the regressors, there is a level of
chance associated with the mix of regressors. For example, there are a total of five possible variables from the nonlinear
valve platform, shown in the right plot of Fig. 29, that could be used as regressors for the target plant input, shown in the
right plot of this figure. No valid controllers could be obtained from this mix of regressors, because ELGP found easiest to
match the shape of the plant input with combinations of x2 and x3. But any equation independent of the reference is
unsuitable as a tracking controller, so we had to test ELGP with different combinations of regressors to find the proper
mix for delivering a tracking controller.
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Fig. 29. All of the variables from the nonlinear valve platform (right) that could be used as regressors for generating an equation for the target plant input
(left).

Fig. 28. Example of a deficient candidate controller output not adequately matching its target.
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7. Future work

The proposed SRBCD method is in its early stages of development, so its results, although promising, cannot yet address
all the issues of concern in a practical control method. Our thoughts about addressing some of these issues are expressed
below.
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� Robustness analysis of the controllers. The controllers produced by SRBCD are tested on plants having the same param-
eter values as during input estimation and controller construction. It behooves us, therefore, to evaluate the robustness of
these controllers to parametric uncertainty and/or variability [25]. Given that the SRBCD-generated controllers are
model-based, one could potentially analyze the stability of the closed-loop system analytically. The alternative approach
that we are considering is robustness analysis through Monte Carlo simulation.

� Performance in presence of output noise. Although we did conduct in this paper a cursory evaluation of the controllers’
performance in presence of added output noise, the evaluation is a bit idealistic by assuming the states different from the
output to be measurable independent of noise. A more realistic evaluation is, therefore, needed wherein state observers
are used and the effect of noise is mitigated by the application of low-pass filters.

� Considering multiple targets for controller design. Deriving a controller equation based on a single target is like train-
ing a car driver based on a single turning maneuver. Although it is remarkable and reassuring that such single-target
equations can function as controllers and respond to inputs and disturbances for which they are not trained, it makes
one wonder if their performance can be further improved when trained on multiple targets.

� Application to MIMO systems. The input estimation method was demonstrated for single-input single-output cases, so it
is a natural next step to evaluate its applicability in multi-input multi-output cases.

� Exploring the applicability of control tuning in adjusting the parameters of SRBCD-generated controllers. As is
observed from Tables 1–4, the controllers include very specific parameter values, making one wonder if the viability of
these controllers is as dependent on these parameter values as it is on their form. To address this question, we plan to
apply iterative feedback tuning [40–43] to explore the effect of parameter adaptation on the controllers’ performance.

8. Conclusion

A novel method of empirical controller design is introduced with the potential to produce unique controller forms by
symbolic regression (SR). To make SR applicable in controller design, time-consuming closed-loop evaluation of controller
candidates is replaced by algebraic evaluation. For this purpose, the desired plant input is estimated and used as target
for derivation of candidate controllers, testing, in effect, the following hypothesis: Given the availability of the plant input that
generates the desired plant output (i.e., inverse solution), whether the equation that generates this plant input could qualify as a
controller; or stated differently, whether an equation developed to produce a desired plant input in terms of the loop variables can
potentially function as a controller in closed-loop. To test this hypothesis, the paper offers an input estimation/adaptation
method to estimate the open-loop plant input for a desired plant output (inverse solution). It then uses ELGP for symbolic
regression (SR) to produce concise equations for the plant input in terms of the plant states and other loop variables. It ulti-
mately tests as controllers in closed-loop the produced equations by SR to evaluate their validity. The viability of the method
and its underlying hypothesis are tested in application to three nonlinear plants.
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Appendix A. Controller form and transparency

When controllers have a legible form they are called transparent, because they inform how their output is computed in
terms of the controller inputs. For example, with U sð Þ representing the Laplace transform of the controller output and E sð Þ
the Laplace transform of the controller input, if the controller is a lead compensator: U sð Þ=E sð Þ ¼ k1 sþ zð Þ= sþ pð Þ; z < p or if
it is in the form of proportional plus integral plus derivative (PID) controller: U sð Þ=E sð Þ ¼ kp þ ki=sþ kds, it is clear what the
order of the controller is, how its output u tð Þ is computed as a function of its inputs, and how much weight is given to each
one of its constituents. We refer to this clarity of structure as transparency. In contrast, one may consider a neuro-controller
[6–9], as depicted in Fig. A1. It consists of numerous neurons and the connection weights between them. The controller out-
puts, therefore, cannot be distinctly associated with individual inputs, precluding understanding of the controller form and
how its outputs are weighted in relation to its inputs.
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Fig. A1. A simple multi-layer neural network, with only a few of connections drawn.

K. Danai and W.G. La Cava Mechanical Systems and Signal Processing 151 (2021) 107348
Appendix B. A brief overview of symbolic regression

Symbolic regression (SR) is a form of regression that attempts to estimate a model’s structure, as well as its parameters,
starting with basic building blocks like mathematical functions. SR is typically conducted using genetic programming (GP)
[44], which is a bio-inspired machine learning technique that constructs a population of candidate models from mathemat-
ical building blocks and then selects and varies these models over several generations before converging on a model that best
fits the target (plant input, in this case). Due to an expansive search space that includes model structures in addition to
parameters, SR can be computationally intensive in comparison to other empirical methods. SR attempts to solve the
problem
minimize F Mh; Tð Þ subject to M 2 S ðS1Þ
whereMh is a model parameterized by h from the space of possible modelsS, and F denotes aminimized fitness function over
training examples T . Given that it is impractical to exhaustively searchS, the model found tominimize F Mh; Tð Þmay only be
locally optimal, but it is assumed that such amodel can nevertheless fulfill the purpose of adequately representing the process
(controller, in this case), as depicted by the target. In the field of SR, stochastic optimization (i.e. metahueristic) techniques like
GP have been successful [45]. These techniques are named for their incorporation of some randomness into the search pro-
cess, thereby allowing the discontinuous changes needed for exploring equation forms. A number of other techniques fall
under this umbrella as well, including hill climbing, simulated annealing, and particle swarm optimization [45].

GP is a population-based metaheuristic strategy that uses principles of biological evolution to define the ways in which
candidate solutions are updated. Although evolutionary problem-solving strategies were discussed in the sixties [46] and
seventies [47], the canonical GP used widely today was developed by John Koza [44] in early nineties (preceded by Cramer
[48]), and many of his research practices continue to be popular. The overall process of SR is visualized in Fig. B1. In GP,
model development is achieved using an evolutionary scheme in which a population of different computer programs are
tested for their fitness according to one or several measures of their quality, and go through a process of Darwinian selection
and variation to form the next iteration (generation) of candidate solutions. In SR the programs consist of building blocks
(nodes) of equations, for example {þ;�; �; =;x; y; z} where the variables x; y, and z are represented by their numerical values
(time-series, in our case). The blocks are then constructed into a graph, most commonly a tree. Candidate solutions in the
population are probabilistically selected for survival each generation based on their fitness. Variation is introduced to the
search process by mutation and recombination (i.e. crossover) of subprograms in chosen solutions each generation. The
search is thus driven by selection and variation: the selection process allows for exploitation of promising solutions while
variation mostly serves to explore the neighborhood of promising solutions. This generational process is repeated until an
adequate solution is found.

GP and variants of it have been applied successfully for system identification in many fields, including climate modeling
[35], robotics [49], wind turbine mechanics [50], physics [30], and biology [51]. It has become a popular method especially
for finding nonlinear differential equation solutions [10,11,29,30], in addition to finding closed-form, analytical solutions to
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Fig. B1. Genetic Programming as applied to symbolic regression.
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them [52,53]. Furthermore, GP has been used to successfully design systems and solve problems, and has produced human-
competitive results in various fields, including antenna design [54], photonics [55], circuit design [56], game play [57], finite
algebras [58], and quantum computer programming [59].

Appendix C. Implementation and algorithmic features

The design process by the SRBCD method, illustrated in Fig. 1, consists of two main steps: (1) input estimation, and (2)
symbolic regression by ELGP. The necessary information for each step is as follows:

� Input Estimation

1. The target output that is computed, for example, as the impulse or step response of a linear system, or as the closed-
loop response of the controlled linearized model.
2. A linearized model of the plant for input computation and its subsequent adaptation (see Fig. 2).
3. Open-loop simulation of the plant, for simulation-based implementation, or the plant and required instrumentation,
for real-time acquisition of open-loop plant output for evaluation of the plant input after each adaptation iteration.
4. Specification of kp and error threshold in Eq. (7).

� Controller Construction

1. The plant input obtained from the input estimation step, to be used as the target of symbolic regression.
2. The regressors in the form of time-series obtained from open-loop simulation of the plant subject to the desired/
adapted plant input.
3. Selection of configuration parameters for ELGP, such as the number of generations, the size of population, fitness type,
etc. The ELGP algorithm is available on-line at [60].

As far as computation time for each step, estimating the input for the inverted pendulum using MatlabTM and SimulinkTM

on a regular PC took 2671 adaptation steps and 594 s. ELGP took about 29 min and 4 s to evaluate 3 million equations over
the course of 1000 generations for finding a candidate equation for the inverted pendulum.

Appendix D. A brief overview of sinusoidal-input describing functions

A describing function can approximate, under certain conditions, the frequency response of a nonlinear system [2]. The
fundamental assumption of the describing function is that the higher harmonics generated by the nonlinear element from
the sinusoidal input be filtered by the system linear elements, so that only the fundamental frequency contained in the input
be considered for the analysis. As expected, both the magnitude of excitation and its frequency affect the output response,
but more so the magnitude. For illustration purposes, shown in Fig. D1 are samples of the closed-loop output in response to a
sinusoidal input. The output on the left, in response to a lower frequency excitation of the same magnitude as on the right, is
nonharmonic, whereas the one on the right, in response to a higher frequency excitation, is harmonic. The response on the
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Fig. D2. SimulinkTM model for evaluating the controller obtained by SRBCD for the active suspension system.

Fig. D1. Samples of outputs in response to a hormonic excitation. The left plot is a nonharmonic response disallowing the estimation of SIDFs.
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left would become harmonic with a lower magnitude excitation, and the one on the right would become nonharmonic with a
higher magnitude excitation. The SDIFs were obtained for excitation magnitudes that generated harmonic excitation at all
frequencies.
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The objective is to estimate describing functions that approximate the loop gain, L for frequency domain stability analysis
[61]. However, it is not always possible to readily estimate the describing functions. An example of such a case is the non-
linear active suspension in Eq. (8). As depicted in the SimulinkTM model of Fig. D2, the ratio of no pair of variables available
from the simulation (e.g., u1, u2, x1, and x2) would approximate the loop gain.
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